REFERENCES
2. Mensur-alkoy, E.; Okatan, M. B.; Aydin, E.; Kilic, Y.; Misirlioglu, I. B.; Alkoy, S. Effect of texture on the electrical and electrocaloric properties of 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 relaxor ceramics. J. Appl. Phys. 2020, 128, 084102.
3. Cheng, L.; Ma, Z.; Lu, J.; Jiang, G.; Chen, K. Grain-orientation-engineered PMN-10PT ceramics for electrocaloric applications. J. Am. Ceram. Soc. 2023, 106, 1194-202.
4. Maurya, D.; Zhou, Y.; Yan, Y.; Priya, S. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C. 2013, 1, 2102.
5. Zhang, H.; Xu, P.; Patterson, E.; Zang, J.; Jiang, S.; Rödel, J. Preparation and enhanced electrical properties of grain-oriented
6. Liu, K.; Ma, W.; Liu, F.; et al. Boosting electric-field-induced strain of dual templates-textured (Na1/2Bi1/2)TiO3-based lead-free piezoceramics by polarization coupling. J. Eur. Ceram. Soc. 2022, 42, 6466-77.
7. Bai, W.; Chen, D.; Zheng, P.; et al. Grain-orientated lead-free BNT-based piezoceramics with giant electrostrictive effect. Ceram. Int. 2017, 43, 3339-45.
8. Zhang, L.; Lin, J.; Li, G.; Qian, J.; Shen, B.; Zhai, J. Dual-template textured BNT-based ceramics with ultra-low electrostrain hysteresis. J. Eur. Ceram. Soc. 2024, 44, 7597-604.
9. Messing, G. L.; Trolier-mckinstry, S.; Sabolsky, E. M.; et al. Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid. State. Mater. Sci. 2004, 29, 45-96.
10. Hiruma, Y.; Yoshii, K.; Nagata, H.; Takenaka, T. Phase transition temperature and electrical properties of
11. Cao, W.; Li, W.; Xu, D.; Hou, Y.; Wang, W.; Fei, W. Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram. Int. 2014, 40, 9273-8.
12. Le, G. F.; Bennett, J.; Axelsson, A.; et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett. 2015, 107, 172903.
13. Bai, W.; Xi, J.; Zhang, J.; Shen, B.; Zhai, J.; Yan, H. Effect of different templates on structure evolution and large strain response under a low electric field in <00l>-textured lead-free BNT-based piezoelectric ceramics. J. Eur. Ceram. Soc. 2015, 35, 2489-99.
14. Luo, L.; Dietze, M.; Solterbeck, C.; Es-souni, M.; Luo, H. Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 single crystal. Appl. Phys. Lett. 2012, 101, 062907.
15. Zhao, Y.; Gao, H.; Hao, X.; Zhang, Q. Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films. Mater. Res. Bull. 2016, 84, 177-84.
16. Hamad, M. A. Electrocaloric properties of Zr-modified Pb(Mg1/3Nb2/3)O3 polycrystalline ceramics. J. Adv. Dielect. 2013, 03, 1350029.
17. Hou, X.; Li, X.; Zhang, J.; Bag, S. P.; Li, H.; Wang, J. Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics. Phys. Rev. Appl. 2021, 15.
18. Su, Y.; Liu, N.; Weng, G. J. A phase field study of frequency dependence and grain-size effects in nanocrystalline ferroelectric polycrystals. Acta. Materialia. 2015, 87, 293-308.
19. Zhang, W.; Bhattacharya, K. A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning. Acta. Materialia. 2005, 53, 199-209.
20. Hu, H.; Chen, L. Three-dimensional computer simulation of ferroelectric domain formation. J. Am. Ceram. Soc. 1998, 81, 492-500.
21. Ahluwalia, R.; Cao, W. Influence of dipolar defects on switching behavior in ferroelectrics. Phys. Rev. B. 2000, 63.
22. Wang, J.; Shi, S.; Chen, L.; Li, Y.; Zhang, T. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta. Materialia. 2004, 52, 749-64.
23. Li, Y.; Hu, S.; Liu, Z.; Chen, L. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta. Materialia. 2002, 50, 395-411.
24. Hwang, S. C.; Arlt, G. Switching in ferroelectric polycrystals. J. Appl. Phys. 2000, 87, 869-75.
25. Hwang, S. C.; Huber, J. E.; Mcmeeking, R. M.; Fleck, N. A. The simulation of switching in polycrystalline ferroelectric ceramics. J. Appl. Phys. 1998, 84, 1530-40.
26. Arlt, G. A model for switching and hysteresis in ferroelectric ceramics. Integr. Ferroelectr. 1997, 16, 229-36.
27. Kim, S. Polarization switching of ferroelectric ceramics with grain boundary effect: a simple continuum model. J. Appl. Phys. 2002, 92, 2668-73.
28. Rödel, J.; Kreher, W. S. Modelling linear and nonlinear behavior of polycrystalline ferroelectric ceramics. J. Eur. Ceram. Soc. 2003, 23, 2297-306.
29. Zhang, W.; Bhattacharya, K. A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta. Materialia. 2005, 53, 185-98.
30. Li, J. Y.; Rogan, R. C.; Ustündag, E.; Bhattacharya, K. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 2005, 4, 776-81.
31. Choudhury, S.; Li, Y.; Krilliii, C.; Chen, L. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta. Materialia. 2005, 53, 5313-21.
32. Choudhury, S.; Li, Y.; Krill, I. C.; Chen, L. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: phase field simulations. Acta. Materialia. 2007, 55, 1415-26.
33. Huang, S.; Ma, C.; Jin, K. Advanced ferroelectric oxide films and heterostructures for unconventional applications. Adv. Phys:. X. 2025, 10, 2438686.
34. Wang, J. J.; Wang, B.; Chen, L. Q. Understanding, Predicting, and designing ferroelectric domain structures and switching guided by the phase-field method phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 2019, 49, 127-152.
35. Gu, Y.; Meng, A. C.; Ross, A.; Chen, L. A phenomenological thermodynamic energy density function for ferroelectric wurtzite
36. Guo, C.; Huang, H. Design of super-elastic freestanding ferroelectric thin films guided by phase-field simulations. Microstructures 2022, 2, 21.
37. Hou, Y.; Li, J.; Yin, R.; et al. The critical role of phase transition and composition regulation in inorganic perovskite electrocaloric materials. J. Mater. Chem. C. 2025, 13, 5406-23.
38. Feng, H.; Hao, M.; Wu, G.; et al. Large electrocaloric effect and wide working area in the transition from ferroelectric to nanodomains. J. Am. Ceram. Soc. 2024, 107, 4777-88.
39. Ou, Y.; Lei, C.; Shan, D. Electrocaloric effect in different oriented BaZr0.15Ti0.85O3 single crystals. Materials. (Basel). 2022, 15, 7018.
40. Ullah, S.; Pramanik, T.; Kong, J.; Zheng, G. P.; Li, K.; Pramanik, A. Highly enhanced electrothermal properties of 001-textured Pb-free ferroelectric (Ba,Ca) (Ti, Zr, Sn)O3 for energy harvesting and solid-state cooling. J. Eur. Ceram. Soc. 2025, 45, 16830.
41. Lu, B.; Jian, X.; Lin, X.; et al. Enhanced electrocaloric effect in 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystals via direct measurement. Crystals 2020, 10, 451.
42. Jin, M.; Qiu, J.; Chen, Z.; Wang, X.; Yuan, N.; Ding, J. Electrocaloric effect of (110) oriented KNbO3 film. J. Nanosci. Nanotechnol. 2021, 21, 5247-52.
43. He, N.; Li, Q.; Lei, C.; et al. Electrocaloric response modulated by misfit strain in different oriented epitaxial ferroelectric thin films. Int. J. Solids. Struct. 2022, 252, 111808.
44. Lou, X. H.; Chen, Y. J.; Hou, X.; Wang, J.; Tian, X. B. Effects of the grain orientation on the electrocaloric effect of polycrystalline ferroelectrics. In 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Proceedings of 2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, IEEE Publishers: Piscataway, New Jersey, USA, 2022; pp 503-7.
45. Ünal, M. A.; Karakaya, M.; Irmak, T.; et al. Electrocaloric behaviour of tape cast and grain oriented NBT-KBT ceramics. J. Eur. Ceram. Soc. 2024, 44, 2128-34.
46. Shao, C.; Huang, H. Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model. Chinese. Phys. B. 2025, 34, 027701.
47. Zhang, J.; Hou, X.; Zhang, Y.; Tang, G.; Wang, J. Electrocaloric effect in ferroelectric materials: from phase field to first-principles based effective Hamiltonian modeling. Mater. Rep:. Energy. 2021, 1, 100050.
48. Chen, X.; Li, S.; Jian, X.; et al. Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis. Appl. Phys. Lett. 2021, 118, 122904.
49. Nouchokgwe, Y.; Lheritier, P.; Hong, C. H.; et al. Giant electrocaloric materials energy efficiency in highly ordered lead scandium tantalate. Nat. Commun. 2021, 12, 3298.
50. Liu, X.; Wu, Z.; Guan, T.; et al. Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric:
51. Hadouch, Y.; Ben, M. S.; Mezzourh, H.; et al. Electrocaloric effect and high energy storage efficiency in lead-free
52. Shu, W.; Li, H.; Huang, Y.; et al. Frequency-dependent ferroelectric and electrocaloric properties in barium titanate-based ceramics based on Maxwell relations. J. Adv. Dielect. 2024, 14, 2440008.
53. Liu, Y.; Chen, X.; Han, Z.; Zhou, H.; Wang, Q. Defects in poly(vinylidene fluoride)-based ferroelectric polymers from a molecular perspective. Appl. Phys. Rev. 2022, 9, 031306.
54. Zheng, S.; Du, F.; Zheng, L.; et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 2023, 382, 1020-6.
55. Yu, Y.; Du, H.; Yang, Z.; Li, J.; Qu, S. Electrocaloric effect of lead-free bulk ceramics: current status and challenges. J. Inorg. Mater. 2019, 35, 633-46. (in Chinese).
56. Liao, L.; Shan, D.; Lei, C.; Pan, K.; Li, J.; Liu, Y. Revealing the mechanisms of electrocaloric effects by simultaneously direct measuring local electrocaloric and electrostrain under ambient conditions. Acta. Materialia. 2024, 278, 120264.
57. Huang, Y. H.; Wang, J. J.; Yang, T. N.; Wu, Y. J.; Chen, X. M.; Chen, L. Q. A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1-xSrxTiO3 single crystals. Appl. Phys. Lett. 2018, 112, 102901.







