REFERENCES
2. Tang, X.; Yang, T.; Yu, D.; Xiong, H.; Zhang, S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environ. Int. 2024, 185, 108535.
3. Caldwell, M.; Björn, L.; Bornman, J.; et al. Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J. Photoch. Photobio. B. 1998, 46, 40-52.
4. Maccarone, M. C.; La, R. G.; Catalano, O.; et al. UVscope and its application aboard the ASTRI-Horn telescope. Exp. Astron. 2021, 51, 529-50.
5. Su, L.; Zhou, D.; Lu, H.; Zhang, R.; Zheng, Y. Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond. 2019, 40, 121802.
6. Smith, J. P.; Bailey, J. I.; Cuda, A.; Zobrist, N.; Mazin, B. A. MKIDGen3: Energy-resolving, single-photon-counting microwave kinetic inductance detector readout on a radio frequency system-on-chip. Rev. Sci. Instrum. 2024, 95, 114705.
7. Boukhicha, M.; Tsang, T. Y.; Giacomini, G.; Dabiran, A. M.; Cultrera, L. UV hybrid photon detector based on GaN photocathodes and Si low gain avalanche diode. J. Inst. 2024, 19, P07020.
8. Adams, J. H.; Allard, D.; Alldredge, P.; et al. The EUSO-SPB2 fluorescence telescope for the detection of ultra-high energy cosmic rays. Astropart. Phys. 2025, 165, 103046.
10. Su, L.; Zhang, Y.; Xie, J. An all-inorganic CsPbBr3/GaN hetero-structure for a near UV to green band photodetector. J. Mater. Chem. C. 2022, 10, 1349-56.
11. Liu, J.; Jiang, W.; Kumar, S.; Deen, M. J. Time-controlled SPAD receivers in optical wireless communication system. IEEE. Photonics. J. 2023, 15, 1-13.
12. Ribisch, C.; Hofbauer, M.; Kohneh, P. S. S.; et al. Multi-channel gating chip in 0.18 µm high-voltage CMOS for quantum applications. Sensors. (Basel). 2023, 23, 9644.
13. Chen, H.; Chen, X.; Lu, J.; et al. Toward long-distance underwater wireless optical communication based on a high-sensitivity single photon avalanche diode. IEEE. Photonics. J. 2020, 12, 1-10.
14. Hippke, M. Interstellar communication: short pulse duration limits of optical SETI. J. Astrophys. Astron. 2018, 39, 9565.
16. Antolovic, I. M.; Burri, S.; Bruschini, C.; Hoebe, R.; Charbon, E. Nonuniformity analysis of a 65-kpixel CMOS SPAD imager. IEEE. Trans. Electron. Devices. 2016, 63, 57-64.
17. Zhang, Y.; He, Z.; Tong, X.; Garrett, D. C.; Cao, R.; Wang, L. V. Quantum imaging of biological organisms through spatial and polarization entanglement. Sci. Adv. 2024, 10, eadk1495.
18. Van, D. T.; Lapauw, T.; Janssen, S.; et al. 64 × 64 pixel current-assisted photonic sampler image sensor and camera system for real-time fluorescence lifetime imaging. IEEE. Sensors. J. 2024, 24, 23729-37.
19. Liu, Q.; Xu, L.; Jin, Y.; et al. Ultraviolet response in coplanar silicon avalanche photodiodes with CMOS compatibility. Sensors. (Basel). 2022, 22, 3873.
20. Alirezaei, I. S.; Andre, N.; Flandre, D. Enhanced ultraviolet avalanche photodiode with 640-nm-thin silicon body based on SOI technology. IEEE. Trans. Electron. Devices. 2020, 67, 4641-4.
21. Guo, G.; Chen, W.; Zheng, K.; et al. Research on the structure design of silicon avalanche photodiode with near-ultraviolet high responsivity. Photonics 2024, 11, 1.
22. Jimenéz-Vivanco, M. R.; García, G.; Carrillo, J.; et al. Porous Si-SiO2 UV microcavities to modulate the responsivity of a broadband photodetector. Nanomaterials. (Basel). 2020, 10, 222.
23. Li, G.; Zhu, M.; Guo, Z.; et al. Recent advances in III-V nitrides: properties, applications and perspectives. J. Mater. Chem. C. 2024, 12, 12150-78.
24. Chen, K.; Wang, X.; Zou, C.; et al. Two-in-one: end-emitting blue LED and self-powered UV photodetector based on single trapezoidal PIN GaN microwire for ambient light UV monitoring and feedback. Small. Methods. 2023, 7, e2300138.
25. Morkoç, H.; Strite, S.; Gao, G. B.; Lin, M. E.; Sverdlov, B.; Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363-98.
26. Östling, M. High power devices in wide bandgap semiconductors. Sci. China. Inf. Sci. 2011, 54, 1087-93.
27. Chen, X.; Wang, Y.; Jian, J.; Gu, L.; Zhang, Z. Effect of strain on space charge layer in GaN nanowires investigated by in-situ off-axis electron holography. Prog. Nat. Sci:. Mater. Int. 2017, 27, 186-91.
28. Hassan, A.; Savaria, Y.; Sawan, M. GaN Integration technology, an ideal candidate for high-temperature applications: a review. IEEE. Access. 2018, 6, 78790-802.
29. Kozodoy, P.; Keller, S.; Denbaars, S.; Mishra, U. MOVPE growth and characterization of Mg-doped GaN. J. Cryst. Growth. 1998, 195, 265-9.
30. Cai, Q.; Luo, W.; Yuan, R.; et al. Back-illuminated AlGaN heterostructure solar-blind avalanche photodiodes with one-dimensional photonic crystal filter. Opt. Express. 2020, 28, 6027-35.
31. Sun, Z.; Yang, J.; Zhao, D.; et al. Investigation of the leakage mechanism in solar-blind AlGaN p-i-n photodetector at high reverse bias. J. Appl. Phys. 2024, 136, 175701.
32. Wang, H.; You, H.; Pan, D.; et al. Polarization enhanced GaN avalanche photodiodes with p-type In0.05Ga0.95N layer. IEEE. Photonics. J. 2020, 12, 1-6.
33. Kizilyalli, I. C.; Edwards, A. P.; Nie, H.; Disney, D.; Bour, D. High voltage vertical GaN p-n diodes with avalanche capability. IEEE. Trans. Electron. Devices. 2013, 60, 3067-70.
34. Liu, J.; Xiao, M.; Zhang, R.; et al. 1.2-kV vertical GaN fin-JFETs: high-temperature characteristics and avalanche capability. IEEE. Trans. Electron. Devices. 2021, 68, 2025-32.
35. Dyakonova, N.; Dickens, A.; Shur, M. S.; Gaska, R.; Yang, J. W. Temperature dependence of impact ionization in AlGaN-GaN heterostructure field effect transistors. Appl. Phys. Lett. 1998, 72, 2562-4.
36. Tut, T.; Gokkavas, M.; Butun, B.; Butun, S.; Ulker, E.; Ozbay, E. Experimental evaluation of impact ionization coefficients in
37. Sun, L.; Chen, J.; Li, J.; Jiang, H. AlGaN solar-blind avalanche photodiodes with high multiplication gain. Appl. Phys. Lett. 2010, 97, 191103.
38. Huang, Y.; Chen, D. J.; Lu, H.; et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett. 2012, 101, 253516.
39. Massey, D.; David, J.; Rees, G. Temperature dependence of impact ionization in submicrometer silicon devices. IEEE. Trans. Electron. Devices. 2006, 53, 2328-34.
40. Jeong, H.; Cho, M.; Xu, Z.; et al. Ion-implanted Al0.6Ga0.4N deep-ultraviolet avalanche photodiodes. Appl. Phys. Lett. 2023, 123, 121107.
41. Gan, H.; Yu, J.; Wang, X. Enhancing linearity of light response in avalanche photodiodes by suppressing electrode size effect. Sensors. (Basel). 2024, 24, 3366.
42. Osinsky, A.; Shur, M.; Gaska, R.; Chen, Q. Avalanche breakdown and breakdown luminescence in p-π-n GaN diodes. Electron. Lett. 1998, 34, 691-2.
43. Carrano, J. C.; Lambert, D. J. H.; Eiting, C. J.; et al. GaN avalanche photodiodes. Appl. Phys. Lett. 2000, 76, 924-6.
44. Butun, B.; Tut, T.; Ulker, E.; Yelboga, T.; Ozbay, E. High-performance visible-blind GaN-based p-i-n photodetectors. Appl. Phys. Lett. 2008, 92, 033507.
45. Gautam, L.; Lee, J.; Richards, M.; Razeghi, M. Solar-blind deep UV avalanche photodetectors using reduced area epitaxy. IEEE. J. Quantum. Electron. 2023, 59, 1-4.
46. Limb, J. B.; Yoo, D.; Ryou, J. H.; et al. GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition. Appl. Phys. Lett. 2006, 89, 011112.
47. Shyh-chiang, S.; Yun, Z.; Dongwon, Y.; et al. Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE. Photon. Technol. Lett. 2007, 19, 1744-6.
48. Yoo, D.; Limb, J.; Ryou, J.; et al. AlxGa1-xN ultraviolet avalanche photodiodes grown on GaN substrates. IEEE. Photon. Technol. Lett. 2007, 19, 1313-5.
49. Zhang, Y.; Shen, S.; Kim, H. J.; et al. Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates. Appl. Phys. Lett. 2009, 94, 221109.
50. Kim, J.; Ji, M.; Detchprohm, T.; et al. Comparison of AlGaN p-i-n ultraviolet avalanche photodiodes grown on free-standing GaN and sapphire substrates. Appl. Phys. Express. 2015, 8, 122202.
51. Li, J.; Gao, J.; Yan, X.; et al. GaN p-i-n ultraviolet photodetectors grown on homogenous GaN bulk substrates. Solid-State. Electronics. 2022, 197, 108419.
52. Fukushima, H.; Usami, S.; Ogura, M.; et al. Deeply and vertically etched butte structure of vertical GaN p-n diode with avalanche capability. Jpn. J. Appl. Phys. 2019, 58, SCCD25.
53. Vashaei, Z.; Cicek, E.; Bayram, C.; Mcclintock, R.; Razeghi, M. GaN avalanche photodiodes grown on m-plane freestanding GaN substrate. Appl. Phys. Lett. 2010, 96, 201908.
54. Gautam, L.; Lee, J.; Brown, G.; Razeghi, M. Low dark current deep UV AlGaN photodetectors on AlN substrate. IEEE. J. Quantum. Electron. 2022, 58, 1-5.
55. Cicek, E.; Vashaei, Z.; Mcclintock, R.; Bayram, C.; Razeghi, M. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates. Appl. Phys. Lett. 2010, 96, 261107.
56. Wei, Y.; Xu, W.; Qu, H.; et al. GaN-based low-energy X-ray single photon detector with photon energy resolution and fast response. IEEE. Photon. Technol. Lett. 2024, 36, 123-6.
57. Chen, Y.; Zhang, Z.; Jiang, H.; Li, Z.; Miao, G.; Song, H. The optimized growth of AlN templates for back-illuminated AlGaN-based solar-blind ultraviolet photodetectors by MOCVD. J. Mater. Chem. C. 2018, 6, 4936-42.
58. Kim, J.; Ji, M.; Detchprohm, T.; et al. AlxGa1-xN Ultraviolet avalanche photodiodes with avalanche gain greater than 105. IEEE. Photon. Technol. Lett. 2015, 27, 642-5.
59. Mcclintock, R.; Pau, J. L.; Minder, K.; Bayram, C.; Kung, P.; Razeghi, M. Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes. Appl. Phys. Lett. 2007, 90, 141112.
60. Maeda, T.; Narita, T.; Yamada, S.; et al. Impact ionization coefficients and critical electric field in GaN. J. Appl. Phys. 2021, 129, 185702.
61. Cao, L.; Wang, J.; Harden, G.; et al. Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Appl. Phys. Lett. 2018, 112, 262103.
62. Ji, D.; Ercan, B.; Chowdhury, S. Experimental determination of impact ionization coefficients of electrons and holes in gallium nitride using homojunction structures. Appl. Phys. Lett. 2019, 115, 073503.
63. Jeong, H.; Cho, M.; Xu, Z.; et al. Breakdown characteristics of deep-ultraviolet Al0.6Ga0.4N p-i-n avalanche photodiodes. J. Appl. Phys. 2022, 131, 103102.
64. Shao, Z. G.; Yang, X. F.; You, H. F.; et al. Ionization-enhanced AlGaN heterostructure avalanche photodiodes. IEEE. Electron. Device. Lett. 2017, 38, 485-8.
65. Bayram, C.; Pau, J. L.; Mcclintock, R.; Razeghi, M.; Ulmer, M. P.; Silversmith, D. High quantum efficiency back-illuminated GaN avalanche photodiodes. Appl. Phys. Lett. 2008, 93, 211107.
66. Minder, K.; Pau, J. L.; Mcclintock, R.; et al. Scaling in back-illuminated GaN avalanche photodiodes. Appl. Phys. Lett. 2007, 91, 073513.
67. Ji, D.; Ercan, B.; Benson, G.; Newaz, A. K. M.; Chowdhury, S. 60 A/W high voltage GaN avalanche photodiode demonstrating robust avalanche and high gain up to 525 K. Appl. Phys. Lett. 2020, 116, 211102.
68. Campbell, J.; Dentai, A.; Holden, W.; Kasper, B. High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions. Electron. Lett. (UK). 1983, 19, 818-20.
69. Mcintyre, R. Multiplication noise in uniform avalanche diodes. IEEE. Trans. Electron. Devices. 1966, ED-13, 164-8.
70. Zhang, Z.; Sun, L.; Chen, M.; Qiu, X.; Li, B.; Jiang, H. Separate absorption and multiplication AlGaN solar-blind avalanche photodiodes with high-low-doped and heterostructured charge layer. J. Elec. Materi. 2020, 49, 2343-8.
71. Ji, M.; Kim, J.; Detchprohm, T.; Zhu, Y.; Shen, S.; Dupuis, R. D. p-i-p-i-n separate absorption and multiplication ultraviolet avalanche photodiodes. IEEE. Photon. Technol. Lett. 2018, 30, 181-4.
72. Cao, J.; Cai, Q.; You, H.; et al. Observation of photoelectric-induced microplasma avalanche breakdown in AlGaN ultraviolet photodiode with separate absorption and multiplication structure. Appl. Phys. Lett. 2023, 123, 121109.
73. Ohta, H.; Asai, N.; Horikiri, F.; Narita, Y.; Yoshida, T.; Mishima, T. 4.9 kV breakdown voltage vertical GaN p-n junction diodes with high avalanche capability. Jpn. J. Appl. Phys. 2019, 58, SCCD03.
74. Nomoto, K.; Hu, Z.; Song, B.; et al. GaN-on-GaN p-n power diodes with 3.48 kV and 0.95 mΩ-cm2: a record high figure-of-merit of 12.8 GW/cm2. In 2015 IEEE international electron devices meeting, Proceedings of the 2015 IEEE international electron devices meeting (IEDM), Washington, DC, USA, December 7-9, 2015; IEEE Publisher: Piscataway, New Jersey, USA, 2015; pp 9.7.1-9.7.4.
75. Liu, J.; Xiao, M.; Zhang, R.; et al. Trap-mediated avalanche in large-area 1.2 kV vertical GaN p-n diodes. IEEE. Electron. Device. Lett. 2020, 41, 1328-31.
76. Matys, M.; Ishida, T.; Nam, K. P.; et al. Design and demonstration of nearly-ideal edge termination for GaN p-n junction using Mg-implanted field limiting rings. Appl. Phys. Express. 2021, 14, 074002.
77. Matys, M.; Ishida, T.; Nam, K. P.; et al. Mg-implanted bevel edge termination structure for GaN power device applications. Appl. Phys. Lett. 2021, 118, 093502.
78. Duan, Y.; Xie, A.; Fay, P.; et al. 1.7-kV vertical GaN p-n diodes with step-graded ion-implanted edge termination. In 2023 Device Research Conference (DRC), Proceedings of the 2023 Device Research Conference (DRC), Santa Barbara, CA, USA, June 25-28, 2023; IEEE Publisher: Piscataway, New Jersey, USA, 2023; pp 1-2.
79. You, H.; Wang, H.; Luo, W.; et al. High-performance Al0.1Ga0.9N p-i-n ultraviolet avalanche photodiodes with ultra-shallow bevel edge terminations. IEEE. Electron. Device. Lett. 2024, 45, 869-72.
80. Xu, Z.; Detchprohm, T.; Shen, S.; Nepomuk, O. A.; Dupuis, R. D. Low leakage and high gain GaN p-i-n avalanche photodiode with shallow bevel mesa edge termination and recessed window. IEEE. Trans. Electron. Devices. 2024, 71, 3761-8.
81. Shoji, T.; Narita, T.; Nagasato, Y.; et al. Analysis of intrinsic reverse leakage current resulting from band-to-band tunneling in dislocation-free GaN p-n junctions. Appl. Phys. Express. 2021, 14, 114001.
82. Maeda, T.; Narita, T.; Yamada, S.; et al. Impact ionization coefficients in GaN measured by above-and sub-Eg illuminations for p-/n+ junction. In 2019 IEEE international electron devices meeting, Proceedings of the 2019 IEEE international electron devices meeting (IEDM), San Francisco, CA, USA, December 7-11, 2019; IEEE Publisher: Piscataway, New Jersey, USA, 2019; pp 4.2.1-4.2.4.
83. You, H.; Wang, H.; Luo, W.; et al. Al0.1Ga0.9N p-i-n ultraviolet avalanche photodiodes with avalanche gain over 106. IEEE. Electron. Device. Lett. 2022, 43, 1479-82.
84. You, H.; Wang, H.; Luo, W.; et al. Al0.1Ga0.9N p-i-n ultraviolet avalanche photodiodes with suppressed surface leakage current and uniform avalanche breakdown. Opt. Express. 2023, 31, 37516-22.
85. Wang, W. Uniform and high gain GaN p-i-n ultraviolet APDs enabled by beveled-mesa edge termination. IEEE. Photon. Technol. Lett. 2020, 32, 1357-60.
86. Yuhao, Z.; Min, S.; Hiu-yung, W.; et al. Origin and control of OFF-state leakage current in GaN-on-Si vertical diodes. IEEE. Trans. Electron. Devices. 2015, 62, 2155-61.
87. Fu, H.; Fu, K.; Huang, X.; et al. High performance vertical GaN-on-GaN p-n power diodes with hydrogen-plasma-based edge termination. IEEE. Electron. Device. Lett. 2018, 39, 1018-21.
88. Fu, H.; Fu, K.; Liu, H.; et al. Implantation-and etching-free high voltage vertical GaN p-n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing. Appl. Phys. Express. 2019, 12, 051015.
89. Fu, H.; Fu, K.; Alugubelli, S. R.; et al. High voltage vertical GaN p-n diodes with hydrogen-plasma based guard rings. IEEE. Electron. Device. Lett. 2020, 41, 127-30.
90. Fu, K.; He, Z.; Yang, C.; Zhou, J.; Fu, H.; Zhao, Y. GaN-on-GaN p-i-n diodes with avalanche capability enabled by eliminating surface leakage with hydrogen plasma treatment. Appl. Phys. Lett. 2022, 121, 092103.
91. Zheng, B.; Chen, P.; Yu, C.; et al. Suppression of current leakage along mesa surfaces in GaN-based p-i-n diodes. IEEE. Electron. Device. Lett. 2015, 36, 932-4.
92. Cho, M.; Xu, Z.; Bakhtiary-noodeh, M.; et al. 1.2-kV vertical GaN PIN rectifier with Ion-implanted floating guard rings. IEEE. Trans. Electron. Devices. 2023, 70, 4578-83.
93. Wang, W.; Zhang, H.; Li, Q.; Kang, J. Surface smoothing with BCl3 plasma post-treatment to improve the performance of GaN avalanche photodiodes. Jpn. J. Appl. Phys. 2019, 58, 106505.
94. Sheen, M.; Ko, Y.; Kim, D. U.; et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 2022, 608, 56-61.
95. Han, S.; Yang, S.; Sheng, K. High-voltage and High-ION/IOFF vertical GaN-on-GaN schottky barrier diode with nitridation-based termination. IEEE. Electron. Device. Lett. 2018, 39, 572-5.
96. Cao, J.; Wang, H.; You, H.; et al. Temperature dependent low-frequency noise characteristics of AlGaN avalanche photodiodes with ultra-shallow bevel edge termination. J. Alloys. Compd. 2025, 1010, 177934.
97. Bulmer, J.; Suvarna, P.; Leathersich, J.; et al. Visible-blind APD heterostructure design with superior field confinement and low operating voltage. IEEE. Photon. Technol. Lett. 2016, 28, 39-42.
98. Wang, J.; Liang, Y.; Hou, Q.; et al. Polarization enhanced GaN separate absorption and multiplication ultraviolet avalanche photodiodeswith an ScGaN interlayer. Opt. Lett. 2024, 49, 6713-6.
99. Guo, J.; Xie, F.; Gu, Y.; et al. Improved performance of AlGaN solar-blind avalanche photodiodes with dual multiplication layers. Opt. Quant. Electron. 2023, 55, 4400.
100. Sun, Z.; Yang, J.; Zhao, D.; et al. The effect of nanopipes and an inserted n-AlGaN interlayer on GaN avalanche photodiodes performance. Physica. Status. Solidi. (a). 2024, 221, 2300490.
101. Yu, C.; Chu, C. F.; Tsai, J. Y.; Lin, C. F.; Wang, S. C. Electrical and optical properties of beryllium-implanted Mg-doped GaN. J. Appl. Phys. 2002, 92, 1881-7.
102. Wang, D.; Wang, P.; He, M.; et al. Fully epitaxial, monolithic ScAlN/AlGaN/GaN ferroelectric HEMT. Appl. Phys. Lett. 2023, 122, 090601.
103. Moram, M. A.; Zhang, S. ScGaN and ScAlN: emerging nitride materials. J. Mater. Chem. A. 2014, 2, 6042-50.
104. Hirata, K.; Ikemoto, Y.; Uehara, M.; Yamada, H.; Anggraini, S. A.; Akiyama, M. Effect of phase transition on the piezoelectric properties of scandium-alloyed gallium nitride. J. Appl. Phys. 2024, 135, 164101.
105. Bellotti, E.; Bertazzi, F. A numerical study of carrier impact ionization in AlxGa1-xN. J. Appl. Phys. 2012, 111, 103711.
106. Cai, Z.; Liu, L.; Zhou, P. The development of transfer technologies for advanced 2D circuits integration. Inf. Funct. Mater. 2024, 1, 304-22.
107. Yang, X.; Wang, C. J.; Cheng, S.; Yang, X. G.; Zang, J. H.; Shan, C. X. An ultraviolet-visible distinguishable broadband photodetector based on the positive and negative photoconductance effects of a graphene/ZnO quantum dot heterostructure. Microstructures 2022, 3, 6.
108. Zhang, C.; Zhao, G.; Zhang, D.; Wang, S.; Sun, W. Two-dimensional germanium for photocatalysis. Inf. Funct. Mater. 2024, 1, 108-23.
109. Cai, Q.; Luo, W. K.; Li, Q.; et al. AlGaN ultraviolet Avalanche photodiodes based on a triple-mesa structure. Appl. Phys. Lett. 2018, 113, 123503.
110. Gautam, L.; Jaud, A. G.; Lee, J.; Brown, G. J.; Razeghi, M. Geiger-mode operation of AlGaN avalanche photodiodes at 255 nm. IEEE. J. Quantum. Electron. 2021, 57, 1-6.
111. Verghese, S.; Mcintosh, K.; Molnar, R.; et al. GaN avalanche photodiodes operating in linear-gain mode and Geiger mode. IEEE. Trans. Electron. Devices. , 48, 502-11.
112. Zhou, Q.; Mcintosh, D. C.; Lu, Z.; et al. GaN/SiC avalanche photodiodes. Appl. Phys. Lett. 2011, 99, 131110.
113. Gao, L.; Zhang, N.; You, J.; et al. Broadband and ultra-high-sensitivity separate absorption-multiplication avalanche phototransistor based on a Au-WSe2-Ge heterostructure. ACS. Photonics. 2023, 10, 4349-56.
114. Chen, K.; Li, Z.; Liu, Q.; et al. Graphene/GaN ultraviolet photodetector performance regulated by a HfO2 insulating layer. Appl. Phys. Lett. 2024, 124, 052103.
115. Liu, Q.; Song, W.; Wang, X.; et al. Fowler-Nordheim tunneling mechanism for performance improvement in graphene 2D/GaN 3D heterojunction ultraviolet photodetector. Carbon 2023, 201, 1061-7.
116. Zhao, Z.; Zou, C.; Zhou, E.; et al. Interface engineering by inserting Al2O3 tunneling layer to enhance the performance of graphene/GaAs heterojunction photodetector. Surf. Interfaces. 2023, 39, 102909.
117. Gao, A.; Lai, J.; Wang, Y.; et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-22.
118. Son, B.; Wang, Y.; Luo, M.; et al. Efficient avalanche photodiodes with a WSe2/MoS2 heterostructure via two-photon absorption. Nano. Lett. 2022, 22, 9516-22.
119. Xia, H.; Luo, M.; Wang, W.; et al. Pristine PN junction toward atomic layer devices. Light. Sci. Appl. 2022, 11, 170.
120. Meng, L.; Zhang, N.; Yang, M.; et al. Low-voltage and high-gain WSe2 avalanche phototransistor with an out-of-plane WSe2/WS2 heterojunction. Nano. Res. 2023, 16, 3422-8.
121. Wang, H.; Xia, H.; Liu, Y.; et al. Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes. Nat. Commun. 2024, 15, 3639.
122. Chen, D.; March, S. D.; Jones, A. H.; et al. Photon-trapping-enhanced avalanche photodiodes for mid-infrared applications. Nat. Photon. 2023, 17, 594-600.
123. Butun, S.; Cinel, N. A.; Ozbay, E. Nanoantenna coupled UV subwavelength photodetectors based on GaN. Opt. Express. 2012, 20, 2649-56.
124. Ahmadivand, A.; Sinha, R.; Vabbina, P. K.; Karabiyik, M.; Kaya, S.; Pala, N. Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors. Opt. Express. 2016, 24, 13665-78.
125. Dubey, A.; Mishra, R.; Hsieh, Y. H.; et al. Aluminum plasmonics enriched ultraviolet GaN photodetector with ultrahigh responsivity, detectivity, and broad bandwidth. Adv. Sci. (Weinh). 2020, 7, 2002274.
126. Xu, T.; Sha, S.; Tang, K.; et al. On-chip integrated plasmon-induced high-performance self-powered Pt/GaN ultraviolet photodetector. Chip 2025, 4, 100118.
127. An, Y.; Chu, X.; Huang, Y.; et al. Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector. Prog. Nat. Sci:. Mater. Int. 2016, 26, 65-8.