REFERENCES
1. Wang, B. X.; Xu, C.; Duan, G.; Xu, W.; Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Materials. 2023, 33, 2213818.
2. Chen, J.; Ouyang, W.; Yang, W.; He, J. H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Materials. 2020, 30, 1909909.
3. Wang, H. P.; Li, S.; Liu, X.; Shi, Z.; Fang, X.; He, J. H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, e2003309.
4. Ely, F.; Vieira, K. O.; Reyes-Banda, M. G.; Quevedo-Lopez, M. Broadband photodetectors from silane-passivated CsPbBr3 nanocrystals by ultrasound-mediated synthesis. Nanoscale 2024, 16, 10833-40.
5. Chen, B.; Xu, J.; Shi, S.; Kong, L.; Zhang, X.; Li, L. UV-Vis-NIR broadband self-powered CuInS2/SnO2 photodetectors and the application in encrypted optical communication. ACS. Appl. Mater. Interfaces. 2024, 16, 28917-27.
6. Zhang, Y.; Li, H.; Wang, L.; et al. Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 2015, 5, 7938.
7. He, M.; Lin, Y. J.; Chiu, C. M.; et al. A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano. Energy. 2018, 49, 588-95.
8. Lu, X.; Jiang, P.; Bao, X. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nat. Commun. 2019, 10, 138.
9. Lu, X.; Sun, L.; Jiang, P.; Bao, X. Progress of photodetectors based on the photothermoelectric effect. Adv. Mater. 2019, 31, e1902044.
10. Zhong, Y.; Zhang, L.; Linseis, V.; et al. High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application. Nano. Energy. 2020, 72, 104742.
11. Cheng, P.; Ziegler, M.; Ripka, V.; et al. Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation. ACS. Appl. Mater. Interfaces. 2022, 14, 16894-900.
12. Jin, X. Z.; Qi, X. D.; Wang, Y.; et al. Polypyrrole/helical carbon nanotube composite with marvelous photothermoelectric performance for longevous and intelligent internet of things application. ACS. Appl. Mater. Interfaces. 2021, 13, 8808-22.
13. Zhang, Y.; Fan, Z.; Wen, N.; et al. Novel wearable pyrothermoelectric hybrid generator for solar energy harvesting. ACS. Appl. Mater. Interfaces. 2022, 14, 17330-9.
14. Zhang, M.; Liu, Y.; Guo, F.; et al. High-performance flexible broadband photothermoelectric photodetectors based on tellurium films. ACS. Appl. Mater. Interfaces. 2024, 16, 6152-61.
15. Niu, Y.; Wang, Y.; Wu, W.; et al. Ultrabroadband, fast, and flexible photodetector based on HfTe5 crystal. Adv. Opt. Mater. 2020, 8, 2000833.
16. Zhang, T.; Ren, Z.; Guo, S.; Zhang, G.; Wang, S.; Qiao, S. Broadband self-powered CdS ETL-based MAPbI3 heterojunction photodetector induced by a photovoltaic-pyroelectric-thermoelectric effect. ACS. Appl. Mater. Interfaces. 2023, 15, 44444-55.
17. Ma, J.; Chen, M.; Qiao, S.; Chang, J.; Fu, G.; Wang, S. Photovoltaic-pyroelectric coupled effect in Ag2Se/Si heterojunction for broad-band, ultrafast, self-powered, position-sensitive detectors. ACS. Photonics. 2022, 9, 2160-9.
18. Wu, W.; Wang, Y.; Niu, Y.; et al. Thermal localization enhanced fast photothermoelectric response in a quasi-one-dimensional flexible NbS3 photodetector. ACS. Appl. Mater. Interfaces. 2020, 12, 14165-73.
19. Wang, R.; He, Z.; Wang, J. L.; Liu, J. Y.; Liu, J. W.; Yu, S. H. Manipulating nanowire structures for an enhanced broad-band flexible photothermoelectric photodetector. Nano. Lett. 2022, 22, 5929-35.
20. Sahu, S.; Panda, J.; Haider, G.; Frank, O.; Kalbáč, M.; Velický, M. Self-biased high-responsivity photodetector based on a Bi2SeTe2 topological insulator. ACS. Appl. Electron. Mater. 2023, 5, 6697-703.
21. Zhang, M.; Ban, D.; Xu, C.; Yeow, J. T. W. Large-area and broadband thermoelectric infrared detection in a carbon nanotube black-body absorber. ACS. Nano. 2019, 13, 13285-92.
22. Wang, Y.; Niu, Y.; Chen, M.; et al. Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal. ACS. Photonics. 2019, 6, 895-903.
23. Li, G.; Yin, S.; Tan, C.; et al. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv. Funct. Mater. 2021, 31, 2104787.
24. Perez-Taborda, J. A.; Caballero-Calero, O.; Vera-Londono, L.; Briones, F.; Martin-Gonzalez, M. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy. Mater. 2018, 8, 1702024.
25. Yang, Z. Y.; Jin, X. Z.; Huang, C. H.; Lei, Y. Z.; Wang, Y. Constructing A/B-side heterogeneous asynchronous structure with Ag2Se layers and bushy-like PPy toward high-performance flexible photo-thermoelectric generators. ACS. Appl. Mater. Interfaces. 2022, 14, 33370-82.
26. Wen, D. L.; Liu, X.; Bao, J. F.; et al. Flexible hybrid photo-thermoelectric generator based on single thermoelectric effect for simultaneously harvesting thermal and radiation energies. ACS. Appl. Mater. Interfaces. 2021, 13, 21401-10.
27. Soni, S. K.; Thomas, B.; Thomas, S. B.; Tile, P. S.; Sakharwade, S. G. Carbon nanotubes as exceptional nanofillers in polymer and polymer/fiber nanocomposites: an extensive review. Mater. Today. Commun. 2023, 37, 107358.
28. Wu, N.; Liu, Y.; Wang, S.; Xing, Z. Thermal rectification across an asymmetric layer carbon nanotube van der Waals heterostructure. ACS. Appl. Mater. Interfaces. 2024, 16, 9155-68.
29. Yang, K.; Wu, Y.; Wang, W.; et al. Stretchable, flexible fabric heater based on carbon nanotubes and water polyurethane nanocomposites by wet spinning process. Nanotechnology 2024, 35, 125706.
30. Naik, B. R.; Arya, N.; Balakrishnan, V. Paper based flexible MoS2-CNT hybrid memristors. Nanotechnology 2024, 35, 215201.
31. Kang, J.; Bai, C.; Liu, S.; Jia, Y. Light-induced nontethered rolling of liquid crystal elastomer and carbon nanotube composite ring. ACS. Appl. Polym. Mater. 2024, 6, 2709-18.
32. Chen, C.; Chen, Z.; Hu, S.; Zhou, Y.; Huang, Z.; Zhou, H. Significantly enhanced laser trapping and heating of carbon nanotube/carbon fibre hierarchical composites for efficient laser-assisted automated fibre placement. Compos. Part. A. Appl. Sci. Manuf. 2024, 177, 107965.
33. Cai, Y.; Yu, H.; Cheng, L.; et al. Structure design, surface modification, and application of CNT microwave-absorbing composites. Adv. Sustain. Syst. 2023, 7, 2300272.
34. Jin, X. Z.; Li, H.; Wang, Y.; et al. Ultraflexible PEDOT:PSS/Helical carbon nanotubes film for all-in-one photothermoelectric conversion. ACS. Appl. Mater. Interfaces. 2022, 14, 27083-95.
35. Wang, J.; Xie, Z.; Liu, J. A.; Zhou, R.; Lu, G.; Yeow, J. T. W. System design of large-area vertical photothermoelectric detectors based on carbon nanotube forests with MXene electrodes. Nanoscale. Adv. 2023, 5, 1133-40.
36. Nunna, R.; Qiu, P.; Yin, M.; et al. Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs. Energy. Environ. Sci. 2017, 10, 1928-35.
37. Archana, C.; Harish, S.; Abinaya, R.; Archana, J.; Navaneethan, M. Interface modified MoS2/CNT with enhanced power factor via energy filtering effect for flexible thermoelectric applications. Sens. Actuators. A. Phys. 2022, 348, 113938.
38. Taborowska, P.; Wasiak, T.; Sahlman, M.; Lundström, M.; Janas, D. Carbon nanotube-based thermoelectric modules enhanced by ZnO nanowires. Materials 2022, 15, 1924.
39. Hu, Q. X.; Liu, W. D.; Zhang, L.; et al. SWCNTs/Ag2Se film with superior bending resistance and enhanced thermoelectric performance via in situ compositing. Chem. Eng. J. 2023, 457, 141024.
40. Santhosh, R.; Abinaya, R.; Ponnusamy, S.; Ikeda, H.; Navaneethan, M. Interface scattering induced low thermal conductivity in
41. Park, D.; Kim, M.; Kim, J. Preparation and structure dependent thermoelectric properties of flexible N-type nanostructured silver(I) selenide/multi-walled carbon nanotube composite film. Appl. Surf. Sci. 2023, 613, 156150.
42. Shi, X. L.; Wu, H.; Liu, Q.; et al. SrTiO3-based thermoelectrics: progress and challenges. Nano. Energy. 2020, 78, 105195.
43. Zhao, Y.; Liu, D.; Yan, Z.; et al. Preparation and characterization of the Ag2Se flexible films tuned by PVP for wearable thermoelectric generator. J. Mater. Sci:. Mater. Electron. 2021, 32, 20295-305.
44. Liu, Y.; Lan, X.; Xu, J.; et al. Organic/inorganic hybrid boosting energy harvesting based on the photothermoelectric effect. ACS. Appl. Mater. Interfaces. 2021, 13, 43155-62.
45. Zhang, K.; Ouyang, B.; Wang, Y.; Xia, Y.; Yang, Y. Coupling enhancement of photo-thermoelectric conversion in a lateral ZnO nanowire array. ACS. Appl. Energy. Mater. 2019, 2, 7647-54.
46. Xin, C.; Hu, Z.; Fang, Z.; et al. Flexible and wearable plasmonic-enabled organic/inorganic hybrid photothermoelectric generators. Mater. Today. Energy. 2021, 22, 100859.
47. Kim, B.; Han, M.; Kim, E. Photothermally powered conductive films for absorber-free solar thermoelectric harvesting. J. Mater. Chem. A. 2019, 7, 2066-74.







