REFERENCES

1. Zhang, A.; Zhang, X.; Zhao, H.; et al. MnO2 superstructure cathode with boosted zinc ion intercalation for aqueous zinc ion batteries. J. Colloid. Interface. Sci. 2024, 669, 723-30.

2. Liang, Z.; Tian, F.; Yang, G.; Wang, C. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat. Commun. 2023, 14, 3591.

3. Wu, L.; Fu, H.; Li, S.; et al. Phase-engineered cathode for super-stable potassium storage. Nat. Commun. 2023, 14, 644.

4. Xu, J.; Zhang, J.; Pollard, T. P.; et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694-700.

5. Caracciolo, L.; Madec, L.; Petit, E.; et al. Electrochemical redox processes involved in carbon-coated KVPO4F for high voltage K-ion batteries revealed by XPS analysis. J. Electrochem. Soc. 2020, 167, 130527.

6. Zheng, J.; Sun, C.; Wang, Z.; et al. Double ionic-electronic transfer interface layers for all-solid-state lithium batteries. Angew. Chem. Int. Ed. 2021, 60, 18448-53.

7. Xu, S.; Xu, R.; Yu, T.; et al. Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. Energy. Environ. Sci. 2022, 15, 3379-87.

8. Zhang, Q.; Cheng, X.; Wang, C.; Rao, A. M.; Lu, B. Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy. Environ. Sci. 2021, 14, 965-74.

9. Wang, Y.; Yang, H.; Xu, J.; et al. Competitive coordination of sodium ions for high-voltage sodium metal batteries with fast reaction speed. J. Am. Chem. Soc. 2024, 146, 7332-40.

10. Zhang, Q.; Wang, L.; Wang, J.; et al. Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy. Storage. Mater. 2018, 15, 361-7.

11. Cao, W.; Zhang, E.; Wang, J.; et al. Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta. 2019, 293, 364-70.

12. Cheng, N.; Fan, L.; Liu, Z.; et al. Fluorine atom-inducing graphene oxide in situ coating SnPO composites as anode for sodium ion batteries. Mater. Today. Energy. 2019, 11, 174-81.

13. Wang, D.; Liu, Z.; Gao, X.; Gu, Q.; Zhao, L.; Luo, W. Massive anionic fluorine substitution two-dimensional δ-MnO2 nanosheets for high-performance aqueous zinc-ion battery. J. Energy. Storage. 2023, 72, 108740.

14. Ma, K.; Li, Q.; Hong, C.; Yang, G.; Wang, C. Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 55208-17.

15. Shen, X.; Wang, X.; Zhou, Y.; et al. Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+-mediated MnO2 deposition and dissolution. Adv. Funct. Mater. 2021, 31, 2101579.

16. Li, C.; Chi, X.; Huang, J.; Wu, J.; Liu, Y. Reversible transformation of a zinc salt-boosted high areal capacity manganese dioxide cathode for energy-dense and stable aqueous zinc batteries. ACS. Appl. Energy. Mater. 2022, 5, 1478-86.

17. Ding, S.; Zhang, M.; Qin, R.; et al. Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro. Lett. 2021, 13, 173.

18. Le, T.; Sadique, N.; Housel, L. M.; et al. Discharging behavior of hollandite α-MnO2 in a hydrated zinc-ion battery. ACS. Appl. Mater. Interfaces. 2021, 13, 59937-49.

19. Chen, X.; Ruan, P.; Wu, X.; Liang, S.; Zhou, J. Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta. Phys. Chim. Sin. 2022, 38, 2111003-0.

20. Xie, J.; Yu, F.; Zhao, J.; et al. An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy. Storage. Mater. 2020, 33, 283-9.

21. Zeng, X.; Liu, J.; Mao, J.; et al. Toward a Reversible Mn4+ /Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry. Adv. Energy. Mater. 2020, 10, 1904163.

22. Wang, K.; Zhang, X.; Han, J.; et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS. Appl. Mater. Interfaces. 2018, 10, 24573-82.

23. Zheng, J.; Shi, P.; Chen, C.; et al. Reinforced bonding of Mo-doped MnO2 with ammonium-ion as cathodes for durable aqueous MnO2-Zn batteries. Sci. China. Mater. 2023, 66, 3113-22.

24. Wang, K.; Luo, D.; Ma, Q.; Lai, X.; He, L.; Chen, Z. Advanced in situ and operando characterization techniques for zinc-ion batteries. Energy. Technol. 2024, 12, 2400199.

25. Zhou, W.; Fan, H. J.; Zhao, D.; Chao, D. Cathodic electrolyte engineering toward durable Zn-Mn aqueous batteries. Natl. Sci. Rev. 2023, 10, nwad265.

26. Chen, N.; Wang, W.; Ma, Y.; et al. Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small. Methods. 2024, 8, 2201553.

27. Huang, J.; Wang, Z.; Hou, M.; et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.

28. Li, Y.; Wang, S.; Salvador, J. R.; et al. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 2019, 31, 2036-47.

29. Nguyen, T. N.; Iranpour, B.; Cheng, E.; Madden, J. D. W. Washable and stretchable Zn-MnO2 rechargeable cell. Adv. Energy. Mate. 2022, 12, 2103148.

30. Wang, Z.; Fang, Y.; Shi, J.; Ma, Z.; Qu, X.; Li, P. Conversion reaction of the zinc sulfate hydroxide activated by voltage modulation for high-performance aqueous Zn/MnO2 batteries. Adv. Energy. Mater. 2024, 14, 2303739.

31. Gong, Z.; Liu, Z.; Gao, X. W.; et al. Constructing cyclic hydrogen bonding to suppress side reactions and dendrite formation on zinc anodes. Chem. Eur. J. 2024, 30, e202402558.

32. Wang, S.; Yuan, Z.; Zhang, X.; et al. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem. Int. Ed. 2021, 60, 7056-60.

33. Chen, H.; Zhao, L. K.; Li, S. D.; et al. Suppression of structural degradation in molybdenum-modified layered oxides for high-performance potassium-ion batteries. J. Colloid. Interface. Sci. 2025, 695, 137733.

34. Liao, X.; Pan, C.; Yan, H.; Zhu, Y.; Pan, Y.; Yin, C. Polyaniline-functionalized graphene composite cathode with enhanced Zn2+ storage performance for aqueous zinc-ion battery. Chem. Eng. J. 2022, 440, 135930.

35. Zhang, T.; Wu, X. W.; Jiang, J. B. Energy storage mechanism, issue and modification strategies of vanadiumbased cathode materials for aqueous zinc ion batteries. Chinese. J. Rare. Metals. 2023, 47, 399-424.

36. Yin, C.; Pan, C.; Pan, Y.; Hu, J. Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries. J. Colloid. Interface. Sci. 2023, 642, 513-22.

37. Zhang, Q.; Gao, X.; Liu, X.; et al. Flexible wearable energy storage devices: materials, structures, and applications. Battery. Energy. 2024, 3, 20230061.

38. Sambandam, B.; Mathew, V.; Ahmad, N. F.; Kim, S.; Song, M.; Kim, J. Aqueous rechargeable zinc-metal batteries: a critical analysis. ACS. Energy. Lett. 2024, 9, 3058-65.

39. Zhang, A.; Yin, X.; Saadoune, I.; Wei, Y.; Wang, Y. Zwitterion intercalated manganese dioxide nanosheets as high-performance cathode materials for aqueous zinc ion batteries. Small 2024, 20, 2402811.

40. Zhang, Q.; Zhao, J.; Chen, X.; et al. Unveiling the energy storage mechanism of MnO2 polymorphs for zinc-manganese dioxide batteries. Adv. Funct. Mater. 2024, 34, 2306652.

41. Ding, H.; Zhang, Q.; Liu, Z.; et al. TiO2 quantum dots decorated multi-walled carbon nanotubes as the multifunctional separator for highly stable lithium sulfur batteries. Electrochim. Acta. 2018, 284, 314-20.

42. Liu, Y.; Xiang, K.; Zhou, W.; Deng, W.; Zhu, H.; Chen, H. Investigations on tunnel-structure MnO2 for utilization as a high-voltage and long-life cathode material in aqueous ammonium-ion and hybrid-ion batteries. Small 2024, 20, 2308741.

43. Paik, S.; Choi, I.; Lee, S.; Nam, K. W. Chelating effects of polyphenolic biomolecules to improve β-MnO2 cathode performance for aqueous rechargeable zinc-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 50775-84.

44. Xia, J.; Zhou, Y.; Zhang, J.; et al. Triggering high capacity and superior reversibility of manganese oxides cathode via magnesium modulation for Zn//MnO2 batteries. Small 2023, 19, 2301906.

45. Yin, C.; Pan, C.; Pan, Y.; Hu, J.; Fang, G. Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries. Small. Methods. 2023, 7, 2300574.

46. Li, G.; Sun, L.; Zhang, S.; et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv. Funct. Mater. 2024, 34, 2301291.

47. Li, H.; Liu, Z.; Tang, Y.; Liang, S.; Fang, G. Copper-based materials in anode electrode of aqueous zinc metal batteries. cMat 2024, 1, e25.

48. Li, L.; Yin, C.; Han, R.; Zhong, F.; Hu, J. CNT composite β-MnO2 with fiber cable shape as cathode materials for aqueous zinc-ion batteries. Inorg. Chem. 2024, 63, 13100-9.

49. Yin, C.; Pan, C.; Pan, Y.; Hu, J. Hollow Mn-Co-O@C yolk-shell microspheres with carbon shells as cathodes derived from a double-metal MOF for aqueous zinc-ion batteries. ACS. Sustain. Chem. Eng. 2023, 11, 12397-405.

50. Yin, C.; Wang, H.; Pan, C.; Li, Z.; Hu, J. Constructing MOF-derived V2O5 as advanced cathodes for aqueous zinc ion batteries. J. Energy. Storage. 2023, 73, 109045.

51. Han, R.; Pan, Y.; Du, C.; et al. Eu doping β-MnO2 as cathode materials for high specific capacity aqueous zinc ion batteries. J. Energy. Storage. 2024, 80, 110250.

52. Lin, C.; He, L.; Xiong, P.; et al. Adaptive ionization-induced tunable electric double layer for practical Zn metal batteries over wide pH and temperature ranges. ACS. Nano. 2023, 17, 23181-93.

53. Xiong, P.; Lin, C.; Wei, Y.; et al. Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS. Energy. Lett. 2023, 8, 2718-27.

54. Li, Y.; Li, Y.; Liu, Q.; et al. Revealing the dominance of the dissolution-deposition mechanism in aqueous Zn-MnO2 batteries. Angew. Chem. Int. Ed. 2024, 63, e202318444.

55. Kitchaev, D. A.; Dacek, S. T.; Sun, W.; Ceder, G. Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J. Am. Chem. Soc. 2017, 139, 2672-81.

56. Lian, S.; Sun, C.; Xu, W.; et al. Built-in oriented electric field facilitating durable Zn MnO2 battery. Nano. Energy. 2019, 62, 79-84.

57. Xiong, P.; Zhang, Y.; Zhang, J.; et al. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022, 4, 100076.

58. Wang, T.; Jin, J.; Zhao, X.; Qu, X.; Jiao, L.; Liu, Y. Unraveling the anionic redox chemistry in aqueous zinc-MnO2 batteries. Angew. Chem. Int. Ed. 2024, 63, e202412057.

59. Aguilar, I.; Brown, J.; Godeffroy, L.; et al. A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design. Joule 2025, 9, 101784.

60. Fu, H.; Huang, S.; Wang, C.; et al. Exploring hybrid electrolytes for Zn metal batteries. Adv. Energy. Mater. , 2025, 2501152.

61. Oberholzer, P.; Tervoort, E.; Bouzid, A.; Pasquarello, A.; Kundu, D. Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS. Appl. Mater. Interfaces. 2019, 11, 674-82.

62. Pan, H.; Ellis, J. F.; Li, X.; Nie, Z.; Chang, H. J.; Reed, D. Electrolyte effect on the electrochemical performance of mild aqueous zinc-electrolytic manganese dioxide batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 37524-30.

63. Yadav, G. G.; Turney, D.; Huang, J.; Wei, X.; Banerjee, S. Breaking the 2 V barrier in aqueous zinc chemistry: creating 2.45 and 2.8 V MnO2-Zn aqueous batteries. ACS. Energy. Lett. 2019, 4, 2144-6.

64. Zhang, X.; Wu, S.; Deng, S.; et al. 3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries. Small. Methods. 2019, 3, 1900525.

65. Zhang, Y.; Deng, S.; Luo, M.; et al. Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small 2019, 15, 1905452.

66. Gao, X.; Wu, H.; Li, W.; et al. H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery. Small 2020, 16, 1905842.

67. Zhang, M.; Tong, Y.; Sun, Z.; et al. Two-dimen sional covalent organic framework with synergistic active centers for efficient electrochemical sodium storage. Chem. Mater. 2023, 35, 4873-81.

68. Ding, C.; Wang, Y.; Li, C.; Wang, J.; Zhang, Q.; Huang, W. Constructing ultra-stable, high-energy, and flexible aqueous zinc-ion batteries using environment-friendly organic cathodes. Chem. Sci. 2024, 15, 4952-9.

69. Su, J.; Zhang, M.; Tian, H.; et al. Synergistic π-conjugation organic cathode for ultra-stable aqueous aluminum batteries. Small 2024, 20, 2312086.

70. Tong, Y.; Sun, Z.; Wang, J.; Huang, W.; Zhang, Q. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat 2022, 3, 685-94.

71. Zhao, L.; Gao, X.; Gu, Q.; et al. Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry. eScience 2024, 4, 100201.

72. Qin, Z.; Song, Y.; Yang, D.; et al. Enabling reversible MnO2/Mn2+ transformation by Al3+ addition for aqueous Zn-MnO2 hybrid batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 10526-34.

73. Zuo, Y.; Liu, P.; Ling, L.; et al. Boosted H+ intercalation enables ultrahigh rate performance of the δ-MnO2 cathode for aqueous zinc batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 26653-61.

74. Huang, X.; Liu, X.; Li, H.; Zhao, Q.; Ma, T. Revealing the real charge carrier in aqueous zinc batteries based on polythiophene/manganese dioxide cathode. Small. Struct. 2023, 4, 2200221.

75. Li, J.; Mu, J.; Liu, Z.; et al. Boosting potassium-based dual ion battery with high energy density and long lifespan by red phosphorous. J. Power. Sources. 2023, 571, 233054.

76. Chen, Y.; Zhao, L.; Zhou, J.; et al. Advances in the use of carbonaceous scaffolds for constructing stable composite Li metal anodes. New. Carbon. Mater. 2023, 38, 698-718.

77. Yu, W.; Ge, J.; Hu, Y.; et al. Hybrid high-performance aqueous batteries with potassium-based cathode||zinc metal anode. Sci. China. Mater. 2023, 66, 923-31.

78. Kim, S. J.; Wu, D.; Sadique, N.; et al. Unraveling the dissolution-mediated reaction mechanism of α-MnO2 cathodes for aqueous Zn-ion batteries. Small 2020, 16, 2005406.

79. Li, G.; Chen, W.; Zhang, H.; et al. Membrane-free Zn/MnO2 flow battery for large-scale energy storage. Adv. Energy. Mater. 2020, 10, 1902085.

80. Wang, C.; Wang, M.; He, Z.; Liu, L.; Huang, Y. Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity. ACS. Appl. Energy. Mater. 2020, 3, 1742-8.

81. Wang, S. B.; Ran, Q.; Yao, R. Q.; et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.

82. Liu, Y.; Shi, Q.; Wu, Y.; Wang, Q.; Huang, J.; Chen, P. Highly efficient dendrite suppressor and corrosion inhibitor based on gelatin/Mn2+ Co-additives for aqueous rechargeable zinc-manganese dioxide battery. Chem. Eng. J. 2021, 407, 127189.

83. Wu, B.; Zhang, G.; Yan, M.; et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.

84. Jiang, Y.; Ba, D.; Li, Y.; Liu, J. Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn-Mn batteries with superior performance. Adv. Sci. 2020, 7, 1902795.

85. Alfaruqi, M. H.; Mathew, V.; Gim, J.; et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27, 3609-20.

86. Alfaruqi, M. H.; Gim, J.; Kim, S.; et al. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121-5.

87. Meng, L.; Zhu, Y.; Lu, Y.; et al. Rechargeable Zn-MnO2 batteries: progress, challenges, rational design, and perspectives. ChemElectroChem 2024, 11, e202300495.

88. Liu, Y.; Zhi, J.; Sedighi, M.; et al. Mn 2+ ions confined by electrode microskin for aqueous battery beyond intercalation capacity. Adv. Energy. Mater. 2020, 10, 2002578.

89. Jin, Y.; Zou, L.; Liu, L.; et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.

90. Zhang, R.; Liang, P.; Yang, H.; et al. Manipulating intercalation-extraction mechanisms in structurally modulated δ-MnO2 nanowires for high-performance aqueous zinc-ion batteries. Chem. Eng. J. 2022, 433, 133687.

91. Zhao, W.; Kong, Q.; Wu, X.; et al. ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries. Appl. Surf. Sci. 2022, 605, 154685.

92. Li, Y.; Li, X.; Duan, H.; et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries. Chem. Eng. J. 2022, 441, 136008.

93. Liao, Y.; Chen, H.; Yang, C.; et al. Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries. Energy. Storage. Mater. 2022, 44, 508-16.

94. Yadav, P.; Kumari, N.; Rai, A. K. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. J. Power. Sources. 2023, 555, 232385.

95. An, N.; Xin, J.; Li, W.; et al. 3D Binder-free conjugated microporous polymer carbon Aerogels@MnO2 cathode for high-performance aqueous zinc ion batteries. Appl. Surf. Sci. 2022, 599, 153881.

96. Wang, H.; Liang, M.; Gao, J.; et al. Robust structural stability of flower-like δ-MnO2 as cathode for aqueous zinc ion battery. Colloids. Surf. A. Phys. Eng. Aspects. 2022, 643, 128804.

97. Lai, G.; Ruan, P.; Hu, X.; et al. Dynamic compensation of MnOOH to mitigate the irregular dissolution of MnO2 in rechargeable aqueous Zn/MnO2 batteries. J. Mater. Chem. A. 2023, 11, 15211-8.

98. Siamionau, U.; Aniskevich, Y.; Mazanik, A.; et al. Rechargeable zinc-ion batteries with manganese dioxide cathode: how critical is choice of manganese dioxide polymorphs in aqueous solutions? J. Power. Sources. 2022, 523, 231023.

99. Zhao, S.; Han, B.; Zhang, D.; et al. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A. 2018, 6, 5733-9.

100. Li, H.; Yao, H.; Sun, X.; et al. Interface regulated MnO2/Mn2+ redox chemistry in aqueous Zn ion batteries. Chem. Eng. J. 2022, 446, 137205.

101. Yang, H.; Zhou, W.; Chen, D.; et al. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: a Mn-based competitive capacity evolution protocol. Energy. Environ. Sci. 2022, 15, 1106-18.

102. Ye, X.; Han, D.; Jiang, G.; et al. Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries. Energy. Environ. Sci. 2023, 16, 1016-23.

103. Cui, S.; Zhang, D.; Zhang, G.; Gan, Y. Reaction mechanism for the α-MnO2 cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO2 into Zn-vernadite. J. Mater. Chem. A. 2022, 10, 25620-32.

104. Qiu, C.; Zhu, X.; Xue, L.; et al. The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery. Electrochim. Acta. 2020, 351, 136445.

105. Perez-antolin, D.; Sáez-bernal, I.; Colina, A.; Ventosa, E. Float-charging protocol in rechargeable Zn-MnO2 batteries: unraveling the key role of Mn2+ additives in preventing spontaneous pH changes. Electrochem. Commun. 2022, 138, 107271.

106. Yao, H.; Yu, H.; Zheng, Y.; et al. Pre-intercalation of ammonium ions in layered δ-MnO2 nanosheets for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202315257.

107. Wang, Y.; Zhang, Y.; Gao, G.; et al. Effectively modulating oxygen vacancies in flower-like δ-MnO2 nanostructures for large capacity and high-rate zinc-ion storage. Nano-Micro. Lett. 2023, 15, 219.

108. Zhang, A.; Zhao, R.; Wang, Y.; et al. Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery. Angew. Chem. Int. Ed. 2023, 62, e202313163.

109. Wu, L.; Mei, Y.; Liu, Y.; et al. Interfacial synthesis of strongly-coupled δ-MnO2/MXene heteronanosheets for stable zinc ion batteries with Zn2+-exclusive storage mechanism. Chem. Eng. J. 2023, 459, 141662.

110. Xu, X.; Chen, Y.; Li, W.; et al. Achieving ultralong-cycle zinc-ion battery via synergistically electronic and structural regulation of a MnO2 nanocrystal-carbon hybrid framework. Small 2023, 19, 2207517.

111. Li, X.; Ji, C.; Shen, J.; et al. Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage. Adv. Sci. 2023, 10, 2205794.

112. Li, W.; Wang, D. Conversion-type cathode materials for aqueous Zn metal batteries in nonalkaline aqueous electrolytes: progress, challenges, and solutions. Adv. Mater. 2023, 2304983.

113. Li, X.; Xu, Z.; Qian, Y.; Hou, Z. In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy. Storage. Mater. 2022, 53, 72-8.

114. Guo, C.; Liu, H.; Li, J.; et al. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta. 2019, 304, 370-7.

115. Yu, B.; Lu, L.; He, Y.; et al. Hierarchical porous CS@Ce-MnO2 as cathode for energy-dense and long-cycling flexible aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2024, 654, 56-65.

116. Guo, C.; Zhou, Q.; Liu, H.; et al. A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery. Electrochim. Acta. 2019, 324, 134867.

117. Wang, Y.; Liu, L.; Wang, Y.; Qu, J.; Chen, Y.; Song, J. Atomically coupled 2D MnO2/MXene superlattices for ultrastable and fast aqueous zinc-ion batteries. ACS. Nano. 2023, 17, 21761-70.

118. Chen, H.; Cai, S.; Wu, Y.; Wang, W.; Xu, M.; Bao, S. Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive. Mater. Today. Energy. 2021, 20, 100646.

119. Silapasom, W.; Kao-ian, W.; Wannapaiboon, S.; Opchoei, M.; Kheawhom, S. Enhancing zinc-ion batteries: PEDOT-MnO2 cathodes for superior stability and capacity. Radiat. Phys. Chem. 2024, 223, 111935.

120. Zhang, N.; Cheng, F.; Liu, J.; et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

121. Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today. Energy. 2020, 16, 100396.

122. Han, K.; Wang, Z.; An, F.; et al. Boosting aqueous Zn/MnO2 batteries via a synergy of edge/defect-rich cathode and dendrite-free anode. ACS. Appl. Mater. Interfaces. 2022, 14, 4316-25.

123. Zhang, X.; Ma, X.; Bi, H.; et al. Carboxymethylcellulose induced the formation of amorphous MnO2 nanosheets with abundant oxygen vacancies for fast ion diffusion in aqueous zinc-ion batteries. Adv. Funct. Mater. 2025, 35, 2411990.

124. Chen, C.; Shi, M.; Zhao, Y.; Yang, C.; Zhao, L.; Yan, C. Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries. Chem. Eng. J. 2021, 422, 130375.

125. Zhao, J.; Xu, Z.; Zhou, Z.; et al. A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells. ACS. Nano. 2021, 15, 10597-608.

126. Kim, S.; Koo, B.; Jo, Y.; et al. Defect engineering via the F-doping of β-MnO2 cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. J. Mater. Chem. A. 2021, 9, 17211-22.

127. Lee, B.; Seo, H. R.; Lee, H. R.; et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem 2016, 9, 2948-56.

128. Zhang, N.; Cheng, F.; Liu, Y.; et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894-901.

129. Xu, W.; Zhao, K.; Huo, W.; et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano. Energy. 2019, 62, 275-81.

130. Wang, P.; Zhou, H.; Zhong, Y.; Sui, X.; Sun, G.; Wang, Z. Dendrite-free Zn metal anodes with boosted stability achieved by four-in-one functional additive in aqueous rechargeable zinc batteries. Adv. Energy. Mater. 2024, 14, 2401540.

131. Hao, J.; Long, J.; Li, B.; et al. Toward high-performance hybrid Zn-Based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

132. Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656.

133. Guo, S.; Qin, L.; Zhang, T.; et al. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy. Storage. Mater. 2021, 34, 545-62.

134. Chao, D.; Ye, C.; Xie, F.; et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 2020, 32, 2001894.

135. Chuai, M.; Yang, J.; Tan, R.; et al. Theory-driven design of a cationic accelerator for high-performance electrolytic MnO2-Zn batteries. Adv. Mater. 2022, 34, 2203249.

136. Qi, Y.; Li, F.; Sheng, H.; et al. Seed-assisted reversible dissolution/deposition of MnO2 for long-cyclic and green aqueous zinc-ion batteries. Small 2024, 20, 2404312.

137. Mo, F.; Chen, Z.; Liang, G.; et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities. Adv. Energy. Mater. 2020, 10, 2000035.

138. Becknell, N.; Lopes, P. P.; Hatsukade, T.; et al. Employing the dynamics of the electrochemical interface in aqueous zinc-ion battery cathodes. Adv. Funct. Mater. 2021, 31, 2102135.

139. Qu, G.; Zhao, Y.; Li, C.; et al. Hierarchical interface enabled by a guest-anionic chemistry for high-rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2025, 64, e202422036.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/