REFERENCES

1. Chen, Q.; De, M. N.; Yang, Y.; et al. Under the spotlight: the organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano. Today. 2015, 10, 355-96.

2. Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956-3008.

3. Zhao, X.; Yang, D.; Ren, J.; Sun, Y.; Xiao, Z.; Zhang, L. Rational design of halide double perovskites for optoelectronic applications. Joule 2018, 2, 1662-73.

4. NREL Best Reaserach-Cell Efficiency Chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html [Last accessed 18 Apr 2025].

5. Binek, A.; Petrus, M. L.; Huber, N.; et al. Recycling perovskite solar cells to avoid lead waste. ACS. Appl. Mater. Interfaces. 2016, 8, 12881-6.

6. Jiang, Y.; Qiu, L.; Juarez-perez, E. J.; et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy. 2019, 4, 585-93.

7. Li, J.; Cao, H. L.; Jiao, W. B.; et al. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310.

8. Bai, F.; Hu, Y.; Hu, Y.; Qiu, T.; Miao, X.; Zhang, S. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar. Energy. Materials. and. Solar. Cells. 2018, 184, 15-21.

9. Turkevych, I.; Kazaoui, S.; Ito, E.; et al. Photovoltaic rudorffites: lead-free silver bismuth halides alternative to hybrid lead halide perovskites. ChemSusChem 2017, 10, 3754-9.

10. Krishnamoorthy, T.; Ding, H.; Yan, C.; et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A. 2015, 3, 23829-32.

11. Lee, S. J.; Shin, S. S.; Kim, Y. C.; et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 2016, 138, 3974-7.

12. Nishimura, K.; Kamarudin, M. A.; Hirotani, D.; et al. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano. Energy. 2020, 74, 104858.

13. Toshniwal, A.; Kheraj, V. Development of organic-inorganic tin halide perovskites: a review. Solar. Energy. 2017, 149, 54-9.

14. Giustino, F.; Snaith, H. J. Toward lead-free perovskite solar cells. ACS. Energy. Lett. 2016, 1, 1233-40.

15. Yaffe, O.; Chernikov, A.; Norman, Z. M.; et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B. 2015, 92.

16. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS. Energy. Lett. 2017, 2, 1539-48.

17. Monahan, D. M.; Guo, L.; Lin, J.; Dou, L.; Yang, P.; Fleming, G. R. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck. J. Phys. Chem. Lett. 2017, 8, 3211-5.

18. Baranowski, M.; Plochocka, P. Excitons in metal-halide perovskites. Adv. Energy. Mater. 2020, 10, 1903659.

19. Fatema, K.; Arefin, M. S. Enhancing the efficiency of Pb-based and Sn-based perovskite solar cell by applying different ETL and HTL using SCAPS-ID. Opt. Mater. 2022, 125, 112036.

20. Guo, R.; Rao, L.; Liu, Q.; et al. Atmospheric stable and flexible Sn-based perovskite solar cells via a bio-inspired antioxidative crystal template. J. Energy. Chem. 2022, 66, 612-8.

21. Shi, T.; Zhang, H.; Meng, W.; et al. Effects of organic cations on the defect physics of tin halide perovskites. J. Mater. Chem. A. 2017, 5, 15124-9.

22. Zhu, C.; Niu, X.; Fu, Y.; et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 2019, 10, 815.

23. Awais, M.; Kirsch, R. L.; Yeddu, V.; Saidaminov, M. I. Tin halide perovskites going forward: frost diagrams offer hints. ACS. Materials. Lett. 2021, 3, 299-307.

24. Zhou, Y.; Saliba, M. Zooming In on metal halide perovskites: new energy frontiers emerge. ACS. Energy. Lett. 2021, 6, 2750-4.

25. Zhang, C.; Park, N. Materials and methods for cost-effective fabrication of perovskite photovoltaic devices. Commun. Mater. 2024, 5, 636.

26. Scalon, L.; Nogueira, C. A.; Fonseca, A. F. V.; et al. 2D phase formation on 3D perovskite: insights from molecular stiffness. ACS. Appl. Mater. Interfaces. 2024, 16, 51727-37.

27. Wu, S.; Chen, Z.; Yip, H.; Jen, A. K. The evolution and future of metal halide perovskite-based optoelectronic devices. Matter 2021, 4, 3814-34.

28. Teo, S. H.; Ng, C. H.; Ng, Y. H.; Islam, A.; Hayase, S.; Taufiq-yap, Y. H. Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano. Energy. 2022, 99, 107401.

29. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-1.

30. Kim, H. S.; Lee, C. R.; Im, J. H.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

31. Park, N. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423-9.

32. Wang, K.; Jin, Z.; Liang, L.; et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat. Commun. 2018, 9, 4544.

33. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta. Crystallogr. B. Struct. Crystallogr. Cryst. Chem. , 1972;28, 3384-92.

34. Pellet, N.; Gao, P.; Gregori, G.; et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. Engl. 2014, 53, 3151-7.

35. Wang, Y.; Lin, J.; He, Y.; et al. Improvement in the performance of inverted 3D/2D perovskite solar cells by ambient exposure. Solar. RRL. 2022, 6, 2200224.

36. Wu, G.; Yang, T.; Li, X.; et al. Molecular engineering for two-dimensional perovskites with photovoltaic efficiency exceeding 18%. Matter 2021, 4, 582-99.

37. El-Ballouli, A. O.; Bakr, O. M.; Mohammed, O. F. Structurally tunable two-dimensional layered perovskites: from confinement and enhanced charge transport to prolonged hot carrier cooling dynamics. J. Phys. Chem. Lett. 2020, 11, 5705-18.

38. Yi, C.; Luo, J.; Meloni, S.; et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy. Environ. Sci. 2016, 9, 656-62.

39. Huang, J.; Tan, S.; Lund, P. D.; Zhou, H. Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy. Environ. Sci. 2017, 10, 2284-311.

40. Lin, Y.; Chen, B.; Fang, Y.; et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 2018, 9, 4981.

41. Luo, S.; Daoud, W. A. Recent progress in organic-inorganic halide perovskite solar cells: mechanisms and material design. J. Mater. Chem. A. 2015, 3, 8992-9010.

42. Khatoon, S.; Kumar, Y. S.; Chakravorty, V.; et al. Perovskite solar cell’s efficiency, stability and scalability: a review. Mater. Sci. Energy. Technol. 2023, 6, 437-59.

43. Kore, B. P.; Jamshidi, M.; Gardner, J. M. The impact of moisture on the stability and degradation of perovskites in solar cells. Mater. Adv. 2024, 5, 2200-17.

44. Pitaro, M.; Tekelenburg, E. K.; Shao, S.; Loi, M. A. Tin halide perovskites: from fundamental properties to solar cells. Adv. Mater. 2022, 34, e2105844.

45. Ruddlesden, S. N.; Popper, P. New compounds of the K2NIF4 type. Acta. Cryst. 1957, 10, 538-9.

46. Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. Engl. 2014, 53, 11232-5.

47. Stoumpos, C. C.; Cao, D. H.; Clark, D. J.; et al. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852-67.

48. Chen, Y.; Sun, Y.; Peng, J.; et al. Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Advanced. Energy. Materials. 2017, 7, 1700162.

49. Cheng, P.; Xu, Z.; Li, J.; et al. Highly efficient Ruddlesden-Popper halide perovskite PA2 MA4Pb5I16 Solar Cells. ACS. Energy. Lett. 2018, 3, 1975-82.

50. Hong, X.; Ishihara, T.; Nurmikko, A. V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B. Condens. Matter. 1992, 45, 6961-4.

51. Guo, Z.; Wu, X.; Zhu, T.; Zhu, X.; Huang, L. Electron-phonon scattering in atomically thin 2D perovskites. ACS. Nano. 2016, 10, 9992-8.

52. Gélvez-Rueda, M. C.; Hutter, E. M.; Cao, D. H.; et al. Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites. J. Phys. Chem. C. Nanomater. Interfaces. 2017, 121, 26566-74.

53. Fu, W.; Wang, J.; Zuo, L.; et al. Two-dimensional perovskite solar cells with 14.1% power conversion efficiency and 0.68% external radiative efficiency. ACS. Energy. Lett. 2018, 3, 2086-93.

54. Lai, H.; Kan, B.; Liu, T.; et al. Two-dimensional Ruddlesden-Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 2018, 140, 11639-46.

55. Shao, M.; Bie, T.; Yang, L.; et al. Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 2022, 34, e2107211.

56. Kayesh, M. E.; Matsuishi, K.; Kaneko, R.; et al. Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS. Energy. Lett. 2019, 4, 278-84.

57. Ma, L.; Ju, M. G.; Dai, J.; Zeng, X. C. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale 2018, 10, 11314-9.

58. Wang, D.; Liang, P.; Dong, Y.; Shu, H.; Liu, Z. Electronic and optical properties of layered Ruddlesden Popper hybrid X2(MA)n-1SnnI3n+1 perovskite insight by first principles. J. Phys. Chem. Solids. 2020, 144, 109510.

59. Cao, D. H.; Stoumpos, C. C.; Yokoyama, T.; et al. Thin films and solar cells based on semiconducting two-dimensional Ruddlesden-Popper(CH3(CH 2)3NH3)2(CH3NH3)n-1 SnnI3n+1 perovskites. ACS. Energy. Lett. 2017, 2, 982-90.

60. Dion, M.; Ganne, M.; Tournoux, M. Nouvelles familles de phases MIMII2Nb3O10 a feuillets “perovskites”. Mater. Res. Bull. 1981, 16, 1429-35.

61. Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. Interlayer chemistry between thick transition-metal oxide layers: synthesis and intercalation reactions of K[Ca2Nan-3NbnO3n+1] (3 .ltoreq. n .ltoreq. 7). Inorg. Chem. 1985, 24, 3727-9.

62. Ahmad, S.; Fu, P.; Yu, S.; et al. Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 2019, 3, 794-806.

63. Gong, J.; Hao, M.; Zhang, Y.; Liu, M.; Zhou, Y. Layered 2D halide perovskites beyond the Ruddlesden-Popper phase: tailored interlayer chemistries for high-performance solar cells. Angew. Chem. Int. Ed. Engl. 2022, 61, e202112022.

64. Safdari, M.; Svensson, P. H.; Hoang, M. T.; Oh, I.; Kloo, L.; Gardner, J. M. Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. J. Mater. Chem. A. 2016, 4, 15638-46.

65. Mao, L.; Ke, W.; Pedesseau, L.; et al. Hybrid Dion-Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775-83.

66. Ma, C.; Shen, D.; Ng, T. W.; Lo, M. F.; Lee, C. S. 2D Perovskites with short interlayer distance for high-performance solar cell application. Adv. Mater. 2018, 30, e1800710.

67. Boeije, Y.; Van, G. W. T. M.; Zhang, Y.; et al. Tailoring interlayer charge transfer dynamics in 2D perovskites with electroactive spacer molecules. J. Am. Chem. Soc. 2023, 145, 21330-43.

68. Li, X.; Ke, W.; Traoré, B.; et al. Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations. J. Am. Chem. Soc. 2019, 141, 12880-90.

69. Lin, Y. L.; Johnson, J. C. Interlayer triplet energy transfer in dion-jacobson two-dimensional lead halide perovskites containing naphthalene diammonium cations. J. Phys. Chem. Lett. 2021, 12, 4793-8.

70. Ghosh, D.; Acharya, D.; Pedesseau, L.; et al. Charge carrier dynamics in two-dimensional hybrid perovskites: Dion-Jacobson vs. Ruddlesden-Popper phases. J. Mater. Chem. A. 2020, 8, 22009-22.

71. Jokar, E.; Chien, C.; Fathi, A.; Rameez, M.; Chang, Y.; Diau, E. W. Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy. Environ. Sci. 2018, 11, 2353-62.

72. Ke, W.; Stoumpos, C. C.; Spanopoulos, I.; Chen, M.; Wasielewski, M. R.; Kanatzidis, M. G. Diammonium cations in the FASnI3 perovskite structure lead to lower dark currents and more efficient solar cells. ACS. Energy. Lett. 2018, 3, 1470-6.

73. Chen, M.; Ju, M.; Hu, M.; et al. Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics. ACS. Energy. Lett. 2019, 4, 276-7.

74. Li, P.; Liu, X.; Zhang, Y.; et al. Low-dimensional Dion-Jacobson-phase lead-free perovskites for high-performance photovoltaics with improved stability. Angew. Chem. Int. Ed. Engl. 2020, 59, 6909-14.

75. Yao, H.; Wu, T.; Wu, C.; Ding, L.; Hua, Y.; Hao, F. Structural tailoring the phenylenediamine isomers to obtain 2D Dion-Jacobson tin perovskite solar cells with record efficiency. Adv. Funct. Mater. 2024, 34, 2312287.

76. Qian, J.; Li, Y.; Shen, Y.; et al. Dion-Jacobson-phase 2D Sn-based perovskite comprising a high dipole moment of π-conjugated short-chain organic spacers for high-performance solar cell applications. ACS. Nano. 2024, 18, 15055-66.

77. Yao, H.; Shi, C.; Wu, T.; et al. Regulation of the quantum barrier and carrier transport toward high-efficiency quasi-2D Dion-Jacobson tin perovskite solar cells. J. Energy. Chem. 2024, 95, 200-7.

78. Cao, D. H.; Stoumpos, C. C.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843-50.

79. Quan, L. N.; Yuan, M.; Comin, R.; et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 2016, 138, 2649-55.

80. Teale, S.; Proppe, A. H.; Jung, E. H.; et al. Dimensional mixing increases the efficiency of 2D/3D perovskite solar cells. J. Phys. Chem. Lett. 2020, 11, 5115-9.

81. Krishna, A.; Gottis, S.; Nazeeruddin, M. K.; Sauvage, F. Mixed dimensional 2D/3D Hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 2019, 29, 1806482.

82. Li, H.; Zhang, C.; Gong, C.; et al. 2D/3D heterojunction engineering at the buried interface towards high-performance inverted methylammonium-free perovskite solar cells. Nat. Energy. 2023, 8, 946-55.

83. Wang, J.; Luo, S.; Lin, Y.; et al. Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nat. Commun. 2020, 11, 582.

84. Zhou, T.; Xu, Z.; Wang, R.; Dong, X.; Fu, Q.; Liu, Y. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 2022, 34, e2200705.

85. Hauff E. 2D or not 2D: eliminating interfacial losses in perovskite solar cells. Chem 2021, 7, 1694-6.

86. Soe, C. M. M.; Nagabhushana, G. P.; Shivaramaiah, R.; et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 58-66.

87. Duan, J.; Cen, H.; Dai, J.; Wu, Z.; Xi, J. Understand two-dimensional perovskite nanosheets from individual and collective perspectives. Mater. Today. Electron. 2024, 8, 100097.

88. Cresp, M.; Liu, M.; Rager, M.; Zheng, D.; Pauporté, T. 2D Ruddlesden-Popper versus 2D Dion-Jacobson perovskites: of the importance of determining the “true” average n -value of annealed layers. Adv. Funct. Mater. 2025, 35, 2413671.

89. Sutanto, A. A.; Caprioglio, P.; Drigo, N.; et al. 2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. Chem 2021, 7, 1903-16.

90. Wang, T.; Loi, H. L.; Cao, J.; et al. High open circuit voltage over 1 V achieved in tin-based perovskite solar cells with a 2d/3d vertical heterojunction. Adv. Sci. (Weinh). 2022, 9, e2200242.

91. Li, H.; Zang, Z.; Wei, Q.; et al. High-member low-dimensional Sn-based perovskite solar cells. Sci. China. Chem. 2023, 66, 459-65.

92. Kang, Z.; Wang, K.; Zhang, L.; et al. Homogenizing the low-dimensional phases for stable 2D-3D tin perovskite solar cells. Small 2024, 20, e2402028.

93. Zhang, L.; Huang, C.; Yang, L.; et al. Tactic of A-D-A scheme organic photocatalyst with broad spectral feature of absorption enables photocatalytic performance improvement. Surf. Interfaces. 2024, 48, 104327.

94. Jokar, E.; Cheng, P.; Lin, C.; Narra, S.; Shahbazi, S.; Wei-guang, D. E. Enhanced performance and stability of 3D/2D tin perovskite solar cells fabricated with a sequential solution deposition. ACS. Energy. Lett. 2021, 6, 485-92.

95. Sun, M.; Ma, M.; Guo, Y.; et al. Difluorine-substituted molecule-based low-dimensional structure for highly stable tin perovskite solar cells. Solar. RRL. 2022, 6, 2200672.

96. Li, H.; Xu, Y.; Ramakrishnan, S.; et al. Pseudo-halide anion engineering for efficient quasi-2D Ruddlesden-Popper tin perovskite solar cells. Cell. Reports. Physical. Science. 2022, 3, 101060.

97. Li, T.; Wang, Y.; Zhu, W.; et al. Synergistic effect of two hydrochlorides resulting in significantly enhanced performance of tin-based perovskite solar cells with 3D to quasi-2D structural transition. J. Mater. Chem. A. 2022, 10, 14441-50.

98. Gao, W.; Dong, H.; Sun, N.; et al. Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells. J. Energy. Chem. 2022, 68, 789-96.

99. Xu, Y.; Jiang, K.; Wang, P.; et al. Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New. J. Chem. 2022, 46, 2259-65.

100. Chen, B.; Wang, S.; Zhang, X.; Zhu, W.; Cao, Z.; Hao, F. Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chem. Eng. J. 2022, 445, 136769.

101. Wang, S.; Wu, C.; Xie, L.; Ding, L.; Hao, F. Pseudohalide-modulated crystallization for efficient quasi-2D tin perovskite solar cells with minimized voltage deficit. ACS. Materials. Lett. 2023, 5, 936-43.

102. Wang, K.; Yang, P.; Chen, Y.; et al. Rational selection of phenethylammonium salts for 2D/3D tin perovskite solar cells: the halogen ion matters. ACS. Appl. Energy. Mater. 2023, 6, 10509-17.

103. Zhou, Y.; Yan, D.; Feng, X.; et al. Buried interface modification via guanidine thiocyanate for high-performance lead-free perovskite solar cells. J. Phys. Chem. C. 2023, 127, 1320-5.

104. Yao, H.; Zhu, W.; Hu, J.; et al. Halogen engineering of 2D/3D tin halide perovskite for enhanced structural stability. Chem. Eng. J. 2023, 455, 140862.

105. Yang, F.; Zhu, R.; Zhang, Z.; et al. High-stable lead-free solar cells achieved by surface reconstruction of quasi-2D tin-based perovskites. Adv. Mater. 2024, 36, e2308655.

106. Chang, B.; Wang, L.; Li, H.; et al. Phase-pure 2D/3D tin-based perovskite films for solar cells. ACS. Energy. Lett. 2024, 9, 363-72.

107. Zang, Z.; Ma, M.; Jiang, X.; et al. Efficient quasi-2D tin perovskite solar cells based on mixed monoammonium and diammonium terminal molecules. Mater. Chem. Front. 2024, 8, 1827-34.

108. Du, F.; Gu, H.; Jiang, W.; et al. Managing crystallization and phase distribution via 2D perovskite seed crystals for 2D-3D tin-based perovskite solar cells. Adv. Funct. Mater. 2025, 35, 2413281.

109. Pan, H.; Wang, Y.; Zheng, Y.; et al. Phase-pure Ruddlesden-Popper tin halide perovskites for solar energy conversion applications. J. Mater. Chem. A. 2024, 12, 21008-15.

110. Choi, J.; Kim, J.; Jeong, M.; et al. Molecularly engineered alicyclic organic spacers for 2D/3D Hybrid tin-based perovskite solar cells. Small 2024, 20, e2405598.

111. Xu, Y.; Kim, J.; Ramakrishnan, S.; et al. Unraveling the formation mechanisms of highly oriented tin perovskite with a 3D-over-2D heterostructure. ACS. Energy. Lett. 2024, 9, 4734-45.

112. Kang, Z.; Tong, Y.; Wang, K.; et al. Tailoring low-dimensional phases for improved performance of 2D-3D tin perovskite solar cells. ACS. Mater. Lett. 2024, 6, 1-9.

113. Feng, G.; Loi, H. L.; Wang, T.; et al. A-site engineering with thiophene-based ammonium for high-efficiency 2D/3D tin halide perovskite solar cells. Angew. Chem. Int. Ed. Engl. 2025, 64, e202413584.

114. Wang, C.; Zhang, Y.; Gu, F.; et al. Illumination durability and high-efficiency Sn-Based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions. Matter 2021, 4, 709-21.

115. Wu, T.; Liu, X.; Luo, X.; et al. Lead-free tin perovskite solar cells. Joule 2021, 5, 863-86.

116. Chen, L.; Fu, S.; Li, Y.; Sun, N.; Yan, Y.; Song, Z. On the durability of tin-containing perovskite solar cells. Adv. Sci. (Weinh). 2024, 11, e2304811.

117. Heo, J. H.; Kim, J.; Kim, H.; Moon, S. H.; Im, S. H.; Hong, K. H. Roles of SnX2 (X = F, Cl, Br) additives in tin-based halide perovskites toward highly efficient and stable lead-free perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 6024-31.

118. Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A. 2015, 3, 14996-5000.

119. Liu, G.; Jiang, X.; Feng, W.; et al. Synergic electron and defect compensation minimizes voltage loss in lead-free perovskite solar cells. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305551.

120. Lai, H.; Olthof, S.; Ren, S.; et al. Unveiling the GeI2-assisted oriented growth of perovskite crystallite for high-performance flexible Sn perovskite solar cells. Energy. . Environ. Mater. 2025, 8, e12791.

121. Liu, X.; Wang, Y.; Wu, T.; et al. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 2020, 11, 2678.

122. Ryu, D. H.; Kim, J. H.; Obila, J. O.; et al. Erbium chloride-mediated nucleation/crystallization control for high-performance tin-based perovskite solar cells. EcoMat 2024, 6, e12500.

123. Ng, C. H.; Nishimura, K.; Ito, N.; et al. Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano. Energy. 2019, 58, 130-7.

124. Ito, N.; Kamarudin, M. A.; Hirotani, D.; et al. Mixed Sn-Ge perovskite for enhanced perovskite solar cell performance in air. J. Phys. Chem. Lett. 2018, 9, 1682-8.

125. Ng, C. H.; Hamada, K.; Kapil, G.; et al. Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell. J. Mater. Chem. A. 2020, 8, 2962-8.

126. Jang, H.; Lim, H. Y.; Yoon, Y. J.; et al. Formate as anti-oxidation additives for Pb-Free FASnI3 perovskite solar cells. Solar. RRL. 2022, 6, 2200789.

127. Cao, J.; Tai, Q.; You, P.; et al. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A. 2019, 7, 26580-5.

128. Wang, T.; Tai, Q.; Guo, X.; et al. Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS. Energy. Lett. 2020, 5, 1741-9.

129. Wang, N.; Zhou, Y.; Ju, M.; et al. Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv. Energy. Mater. 2016, 6, 1601130.

130. Chen, Q.; Luo, J.; He, R.; et al. Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Adv. Energy. Mater. 2021, 11, 2101045.

131. Lin, Y.; Shen, L.; Dai, J.; et al. π-Conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv. Mater. 2017, 29.

132. Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A. 2016, 4, 17104-10.

133. Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011-38.

134. Ma, Y.; Liu, C.; Zhang, M.; Mai, Y. Review on the effects of solvent physical properties on the performance of slot-die coated perovskite solar cells. Surf. Sci. Tech. 2024, 2, 54.

135. Liao, W.; Zhao, D.; Yu, Y.; et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333-40.

136. Kayesh, M. E.; Chowdhury, T. H.; Matsuishi, K.; et al. Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS. Energy. Lett. 2018, 3, 1584-9.

137. He, L.; Gu, H.; Liu, X.; et al. Efficient Anti-solvent-free spin-coated and printed Sn-perovskite solar cells with crystal-based precursor solutions. Matter 2020, 2, 167-80.

138. Abdel-shakour, M.; Chowdhury, T. H.; Matsuishi, K.; Bedja, I.; Moritomo, Y.; Islam, A. High-efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Solar. RRL. 2021, 5, 2000606.

139. Duan, C.; Zou, F.; Wen, Q.; et al. A bifunctional carbazide additive for durable CsSnI3 perovskite solar cells. Adv. Mater. 2023, 35, e2300503.

140. Deng, L.; Wang, K.; Yang, H.; Yu, H.; Hu, B. Polymer assist crystallization and passivation for enhancements of open-circuit voltage and stability in tin-halide perovskite solar cells. J. Phys. D:. Appl. Phys. 2018, 51, 475102.

141. Ke, W.; Stoumpos, C. C.; Zhu, M.; et al. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 2017, 3, e1701293.

142. Khan, N.; Ryu, D. H.; Park, J.; et al. Bromide incorporation enhances vertical orientation of triple organic cation tin-halide perovskites for high-performance lead-free solar cells. Solar. RRL. 2022, 6, 2200631.

143. Liu, X.; Wu, T.; Chen, J.; et al. Templated growth of FASnI3 crystals for efficient tin perovskite solar cells. Energy. Environ. Sci. 2020, 13, 2896-902.

144. Ryu, D. H.; Khan, N.; Park, J. G.; et al. Morphology and performance enhancement through the strong passivation effect of amphoteric ions in tin-based perovskite solar cells. Small 2023, 19, e2302418.

145. Obila, J. O.; Ryu, D. H.; Oh, S.; et al. Tin-based perovskite solar cells containing a perylene diimide cathode interlayer with a copper top electrode. ACS. Energy. Lett. 2024, 9, 1090-6.

146. Li, Y.; Wang, Y.; Xu, Z.; Peng, B.; Li, X. Key roles of interfaces in inverted metal-halide perovskite solar cells. ACS. Nano. 2024, 18, 10688-725.

147. Wang, F.; Jiang, X.; Chen, H.; et al. 2D-quasi-2D-3D hierarchy structure for tin perovskite solar cells with enhanced efficiency and stability. Joule 2018, 2, 2732-43.

148. Liu, G.; Zhong, Y.; Feng, W.; et al. Multidentate chelation heals structural imperfections for minimized recombination loss in lead-free perovskite solar cells. Angew. Chem. Int. Ed. Engl. 2022, 61, e202209464.

149. Ma, M.; Jiang, X.; Zang, Z.; et al. Suppressing fluoride segregation for high efficiency tin perovskite solar cells. Adv. Funct. Materials. 2024, 34, 2407095.

150. Zhao, Z.; Gu, F.; Li, Y.; et al. Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12. Adv. Sci. (Weinh). 2017, 4, 1700204.

151. Shao, S.; Liu, J.; Portale, G.; et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy. Mater. 2018, 8, 1702019.

152. Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10. Adv. Mater. 2019, 31, e1804835.

153. Ran, C.; Gao, W.; Li, J.; et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule 2019, 3, 3072-87.

154. Kamarudin, M. A.; Hirotani, D.; Wang, Z.; et al. Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment. J. Phys. Chem. Lett. 2019, 10, 5277-83.

155. Meng, X.; Wu, T.; Liu, X.; et al. Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 2020, 11, 2965-71.

156. Meng, X.; Wang, Y.; Lin, J.; et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 2020, 4, 902-12.

157. Chen, M.; Dong, Q.; Eickemeyer, F. T.; et al. High-performance lead-free solar cells based on tin-halide perovskite thin films functionalized by a divalent organic cation. ACS. Energy. Lett. 2020, 5, 2223-30.

158. Wang, C.; Gu, F.; Zhao, Z.; et al. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 2020, 32, e1907623.

159. Nakamura, T.; Yakumaru, S.; Truong, M. A.; et al. Sn(IV)-free tin perovskite films realized by in situ Sn(o) nanoparticle treatment of the precursor solution. Nat. Commun. 2020, 11, 3008.

160. Jiang, X.; Wang, F.; Wei, Q.; et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245.

161. Wang, S.; Yan, L.; Zhu, W.; et al. Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells. Nano. Energy. 2022, 99, 107416.

162. Li, H.; Chang, B.; Wang, L.; et al. Surface reconstruction for tin-based perovskite Solar Cells. ACS. Energy. Lett. 2022, 7, 3889-99.

163. Zhang, Z.; Tian, X.; Wang, C.; et al. Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy. Environ. Sci. 2022, 15, 5274-83.

164. Zou, S.; Ren, S.; Jiang, Y.; et al. Efficient environment-friendly lead-free tin perovskite solar cells enabled by incorporating 4-fluorobenzylammonium iodide additives. Energy. Environ. Mater. 2023, 6, e12465.

165. Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. Smooth and compact FASnI3 films for lead-free perovskite solar cells with over 14% efficiency. ACS. Energy. Lett. 2022, 7, 2079-83.

166. Wang, J.; Yang, C.; Chen, H.; et al. Oriented attachment of tin halide perovskites for photovoltaic applications. ACS. Energy. Lett. 2023, 8, 1590-6.

167. Zhou, X.; Peng, W.; Liu, Z.; et al. Additive engineering with 2,8-dibromo-dibenzothiophene-S, S-dioxide enabled tin-based perovskite solar cells with 14.98% power conversion efficiency. Energy. Environ. Sci. 2024, 17, 2837-44.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/