REFERENCES

1. Yu, J.; Li, B. Q.; Zhao, C. X.; Zhang, Q. Seawater electrolyte-based metal-air batteries: from strategies to applications. Energy. Environ. Sci. 2020, 13, 3253-68.

2. Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139-90.

3. Guo, Y.; Cao, Y.; Lu, J.; Zheng, X.; Deng, Y. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023, 3, 2023038.

4. Zheng, L.; Chang, L.; Xue, S.; et al. Electrochemical responsive alginate chains rendered sol-to-gel gradient electrolyte towards practical Ah-level zinc metal pouch cell. Angew. Chem. Int. Ed. Engl. 2025, 64, e202502103.

5. Ju, L.; Tang, X.; Kou, L. Polarization boosted catalysis: progress and outlook. Microstructures 2022, 2, 2022008.

6. Dey, S.; Mondal, B.; Chatterjee, S.; Rana, A.; Amanullah, S. K.; Dey, A. Molecular electrocatalysts for the oxygen reduction reaction. Nat. Rev. Chem. 2017, 1, 0098.

7. Zhan, Y.; Ding, Z. B.; He, F.; et al. Active site switching of Fe-N-C as a chloride-poisoning resistant catalyst for efficient oxygen reduction in seawater-based electrolyte. Chem. Eng. J. 2022, 443, 136456.

8. Zhang, J.; Yuan, Y.; Gao, L.; Zeng, G.; Li, M.; Huang, H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv. Mater. 2021, 33, e2006494.

9. Li, Y.; Liang, J.; Lin, Z.; et al. Introducing covalent metal-phosphorus bonds into intermetallic platinum-based catalysts for high-performance fuel cells. Renewables 2024, 2, 223-32.

10. Zeng, K.; Zheng, X.; Li, C.; et al. Recent advances in non-noble bifunctional oxygen electrocatalysts toward large-scale production. Adv. Funct. Mater. 2020, 30, 2000503.

11. Osgood, H.; Devaguptapu, S. V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano. Today. 2016, 11, 601-25.

12. Han, X.; He, G.; He, Y.; et al. Metal air batteries: engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy. Mater. 2018, 8, 1870043.

13. Pu, Z.; Liu, T.; Amiinu, I. S.; et al. Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Materials. 2020, 30, 2004009.

14. Tian, D.; Denny, S. R.; Li, K.; Wang, H.; Kattel, S.; Chen, J. G. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 2021, 50, 12338-76.

15. Maiti, S.; Maiti, K.; Curnan, M. T.; Kim, K.; Noh, K.; Han, J. W. Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain. Energy. Environ. Sci. 2021, 14, 3717-56.

16. Hu, X.; Tian, W.; Wu, Z.; Li, X.; Li, Y.; Wang, H. Synthesis of Zr2ON2 via a urea-glass route to modulate the bifunctional catalytic activity of NiFe layered double hydroxide in a rechargeable zinc-air battery. J. Colloid. Interface. Sci. 2024, 672, 610-7.

17. Poudel, M. B.; Balanay, M. P.; Lohani, P. C.; Sekar, K.; Yoo, D. J. Atomic engineering of 3D self-supported bifunctional oxygen electrodes for rechargeable zinc-air batteries and fuel cell applications. Adv. Energy. Mater. 2024, 14, 2400347.

18. He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484-524.

19. Yuan, L. J.; Sui, X. L.; Pan, H.; Wang, Z. B. Strategies and mechanism for enhancing intrinsic activity of metal-nitrogen-carbon catalysts in electrocatalytic reactions. Renewables 2023, 1, 514-40.

20. Shang, H.; Zhou, X. L.; Dong, J.; Wang, Z. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

21. Mun, Y.; Lee, S.; Kim, K.; et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254-62.

22. Liu, M.; Zhang, J.; Su, H.; et al. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 2024, 15, 1675.

23. Grimaud, A.; Demortière, A.; Saubanère, M.; et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy. 2016, 2, 1-10.

24. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

25. Zhou, A. W.; Wang, D. S.; Li, Y. D. Hollow microstructural regulation of single-atom catalysts for optimized electrocatalytic performance. Microstructures 2022, 2, 2022005.

26. Wang, Z.; Niu, H.; Wu, T.; Ding, S.; Yu, X. B.; Su, Y. Periodic defect boundary-mediated activity of electrocatalytic oxygen reduction reactions of Fe-N-C catalysts. Renewables 2024, 3, 213-9.

27. Wang, W.; Hu, Y.; Li, P.; Liu, Y.; Chen, S. Realizing the 4e-/2e- pathway transition of O2 reduction on Co-N4-C catalysts by regulating the chemical structures beyond the second coordination shells. ACS. Catal. 2024, 14, 5961-71.

28. Datye, A. K.; Guo, H. Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 2021, 12, 895.

29. Liu, Y.; Feng, S.; Shan, L.; et al. Localized negatively charged interfaces for seawater electrolyte-based zinc-air batteries. Adv. Funct. Materials. 2025, 35, 2422874.

30. Yu, J.; Zhao, C. X.; Liu, J. N.; Li, B. Q.; Tang, C.; Zhang, Q. Seawater-based electrolyte for zinc-air batteries. GreenChE 2020, 1, 117-23.

31. Yu, Q.; Liu, X.; Liu, G.; et al. Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv. Funct. Materials. 2022, 32, 2205767.

32. Wu, S.; Liu, X.; Mao, H.; et al. Realizing high-efficient oxygen reduction reaction in alkaline seawater by tailoring defect-rich hierarchical heterogeneous assemblies. Appl. Catal. B-Environ. 2023, 330, 122634.

33. Wu, S.; Liu, X.; Mao, H.; et al. Unraveling the tandem effect of nitrogen configuration promoting oxygen reduction reaction in alkaline seawater. Adv. Energy. Mater. 2024, 14, 2400183.

34. Luo, Y.; Li, K.; Hu, Y.; et al. TiN as radical scavenger in Fe-N-C aerogel oxygen reduction catalyst for durable fuel cell. Small 2024, 20, e2309822.

35. Meng, R.; Zhang, C.; Lu, Z.; et al. An oxygenophilic atomic dispersed Fe-N-C catalyst for lean-oxygen seawater batteries. Adv. Energy. Mater. 2021, 11, 2170085.

36. Zhang, J.; Liu, M.; Zhang, Y.; et al. Tandem synergetic effect in symbiotic Co catalyst for enhanced oxygen reduction. Chem. Eng. J. 2025, 505, 159687.

37. Zhang, W.; Zhang, J.; Wang, N.; et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries. Nat. Sustain. 2024, 7, 463-73.

38. Wang, K.; Lu, Z.; Lei, J.; Liu, Z.; Li, Y.; Cao, Y. Modulation of ligand fields in a single-atom site by the molten salt strategy for enhanced oxygen bifunctional activity for zinc-air batteries. ACS. Nano. 2022, 16, 11944-56.

39. Feng, X.; Chen, G.; Cui, Z.; et al. Engineering electronic structure of nitrogen-carbon sites by sp3-hybridized carbon and incorporating chlorine to boost oxygen reduction activity. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316314.

40. Tian, H.; Ma, Y.; Li, Z.; et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 2023, 615, 56-61.

41. Cui, J.; Zhang, D.; Liu, Z.; et al. Carbon-anchoring synthesis of Pt1Ni1@Pt/C core-shell catalysts for stable oxygen reduction reaction. Nat. Commun. 2024, 15, 9458.

42. Zhang, H.; Guo, H.; Li, D.; et al. Halogen doped graphene quantum dots modulate TDP-43 phase separation and aggregation in the nucleus. Nat. Commun. 2024, 15, 2980.

43. Huang, Y.; Zhu, K.; Hu, Z.; et al. Solvent-free synthesis of foam board-like CoSe2 alloy to selectively generate singlet oxygen via peroxymonosulfate activation for sulfadiazine degradation. J. Hazard. Mater. 2024, 466, 133611.

44. Su, J.; Musgrave, C. B.; Song, Y.; et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 2023, 6, 818-28.

45. Kumar, P.; Kannimuthu, K.; Zeraati, A. S.; et al. High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 8052-63.

46. Ye, P.; Fang, K.; Wang, H.; et al. Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation. Nat. Commun. 2024, 15, 1012.

47. Ding, S.; Barr, J. A.; Shi, Q.; et al. Engineering atomic single metal-FeN4Cl sites with enhanced oxygen-reduction activity for high-performance proton exchange membrane fuel cells. ACS. Nano. 2022, 16, 15165-74.

48. Liu, P.; Chen, B.; Liang, C.; et al. Tip-enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions. Adv. Mater. 2021, 33, e2007377.

49. Khan, M. U.; Wang, L.; Liu, Z.; et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem. Int. Ed. Engl. 2016, 55, 9548-52.

50. Zhang, L.; Jin, N.; Yang, Y.; et al. Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nanomicro. Lett. 2023, 15, 228.

51. Sabhapathy, P.; Raghunath, P.; Sabbah, A.; et al. Axial chlorine induced electron delocalization in atomically dispersed fen4 electrocatalyst for oxygen reduction reaction with improved hydrogen peroxide tolerance. Small 2023, 19, e2303598.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/