REFERENCES

1. Bloch, F. Über die quantenmechanik der elektronen in kristallgittern. Z. Physik. 1929, 52, 555-600. (in German).

2. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059-62.

3. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486-9.

4. Dudley, J. M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135-84.

5. Vaidya, S.; Benalcazar, W. A.; Cerjan, A.; Rechtsman, M. C. Point-defect-localized bound states in the continuum in photonic crystals and structured fibers. Phys. Rev. Lett. 2021, 127, 023605.

6. Tyumenev, R.; Hammer, J.; Joly, N. Y.; Russell, P. S. J.; Novoa, D. Tunable and state-preserving frequency conversion of single photons in hydrogen. Science 2022, 376, 621-4.

7. Bonsma-Fisher, K. A. G.; Bustard, P. J.; Parry, C.; et al. Ultratunable quantum frequency conversion in photonic crystal fiber. Phys. Rev. Lett. 2022, 129, 203603.

8. Martínez L, Wiedemann P, Zhu C, Geilen A, Stiller B. Optoacoustic cooling of traveling hypersound waves. Phys. Rev. Lett. 2024, 132, 023603.

9. Morita, R.; Inoue, T.; De, Z. M.; Ishizaki, K.; Noda, S. Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation. Nat. Photonics. 2021, 15, 311-8.

10. Yoshida, M.; Katsuno, S.; Inoue, T.; et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser. Nature 2023, 618, 727-32.

11. Fushman, I.; Englund, D.; Faraon, A.; Stoltz, N.; Petroff, P.; Vuckovic, J. Controlled phase shifts with a single quantum dot. Science 2008, 320, 769-72.

12. Gu, T.; Petrone, N.; Mcmillan, J. F.; et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature. Photon. 2012, 6, 554-9.

13. Zangeneh-Nejad, F.; Fleury, R. Topological analog signal processing. Nat. Commun. 2019, 10, 2058.

14. Wang, H.; Guo, C.; Zhao, Z.; Fan, S. Compact incoherent image differentiation with nanophotonic structures. ACS. Photonics. 2020, 7, 338-43.

15. Guo, C.; Xiao, M.; Minkov, M.; Shi, Y.; Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 2018, 5, 251.

16. Zhou, Y.; Zheng, H.; Kravchenko, I. I.; Valentine, J. Flat optics for image differentiation. Nat. Photonics. 2020, 14, 316-23.

17. Zhu, D.; Zhang, Y. H.; Liu, S. J.; et al. Polychromatic dual-mode imaging with structured chiral photonic crystals. Nano. Lett. 2024, 24, 140-7.

18. Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today. 2009, 12, 60-9.

19. Ginn, J. C.; Brener, I.; Peters, D. W.; et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 2012, 108, 097402.

20. Rybin, M. V.; Filonov, D. S.; Samusev, K. B.; Belov, P. A.; Kivshar, Y. S.; Limonov, M. F. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun. 2015, 6, 10102.

21. Tuz, V. R. Polaritons dispersion in a composite ferrite-semiconductor structure near gyrotropic-nihility state. J. Magn. Magn. Mater. 2016, 419, 559-65.

22. Kadic, M.; Milton, G. W.; van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198-210.

23. Pendry, J. B.; Schurig, D.; Smith, D. R. Controlling electromagnetic fields. Science 2006, 312, 1780-2.

24. Schurig, D.; Mock, J. J.; Justice, B. J.; et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977-80.

25. Liu, R.; Ji, C.; Mock, J. J.; Chin, J. Y.; Cui, T. J.; Smith, D. R. Broadband ground-plane cloak. Science 2009, 323, 366-9.

26. Shelby, R. A.; Smith, D. R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77-79.

27. Valentine, J.; Zhang, S.; Zentgraf, T.; et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376-9.

28. Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics. 2013, 7, 948-57.

29. Liu, Z. W.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686.

30. Wood, B.; Pendry, J. B.; Tsai, D. P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B. 2006, 74, 115116-48.

31. Kim, S.; Peng, Y. G.; Yves, S.; Alù, A. Loss compensation and superresolution in metamaterials with excitations at complex frequencies. Phys. Rev. 2023, 13, 041024.

32. Liu, Y.; Bartal, G.; Zhang, X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt. Express. 2008, 16, 15439-48.

33. Dai, J.; Jiang, H.; Guo, Z.; Qiu, J. Tunable epsilon-and-mu-near-zero metacomposites. Adv. Funct. Mater. 2024, 34, 2308338.

34. Kinsey, N.; Devault, C.; Boltasseva, A.; Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 2023, 8, 742-60.

35. Lu, D.; Kan, J. J.; Fullerton, E. E.; Liu, Z. W. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 2014, 9, 48-53.

36. Li, Y.; Chan, C. T.; Mazur, E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light. Sci. Appl. 2021, 10, 203.

37. Hu, M.; Zhang, Y.; Jiang, X.; et al. Double-bowl state in photonic Dirac nodal line semimetal. Light. Sci. Appl. 2021, 10, 170.

38. Li, J.; Zhou, L.; Chan, C. T.; Sheng, P. Photonic band gap from a stack of positive and negative index materials. Phys. Rev. Lett. 2003, 90, 083901.

39. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966-9.

40. Liu, W.; Chen, J.; Li, T.; et al. Imaging with an ultrathin reciprocal lens. Phys. Rev. X. 2023, 13, 031039.

41. Seddon, N.; Bearpark, T. Observation of the inverse Doppler effect. Science 2003, 302, 1537-40.

42. Kozyrev, A. B.; van der Weide, D. W. Explanation of the inverse Doppler effect observed in nonlinear transmission lines. Phys. Rev. Lett. 2005, 94, 203902.

43. Chen, J.; Wang, Y.; Jia, B.; et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies. Nature. Photon. 2011, 5, 239-42.

44. Xi, S.; Chen, H.; Jiang, T.; et al. Experimental verification of reversed Cherenkov radiation in left-handed metamaterial. Phys. Rev. Lett. 2009, 103, 194801.

45. Hummelt, J. S.; Lu, X.; Xu, H.; Mastovsky, I.; Shapiro, M. A.; Temkin, R. J. Coherent Cherenkov-cyclotron radiation excited by an electron beam in a metamaterial waveguide. Phys. Rev. Lett. 2016, 117, 237701.

46. Duan, Z.; Tang, X.; Wang, Z.; et al. Observation of the reversed Cherenkov radiation. Nat. Commun. 2017, 8, 14901.

47. Guo, X.; Wu, C.; Zhang, S.; et al. Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals. Nat. Commun. 2023, 14, 2532.

48. Alu, A.; Engheta, N. Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency. IEEE. Trans. Antennas. Propagat. 2003, 51, 2558-71.

49. Ginis, V.; Tassin, P.; Soukoulis, C. M.; Veretennicoff, I. Enhancing optical gradient forces with metamaterials. Phys. Rev. Lett. 2013, 110, 057401.

50. Kaina, N.; Lemoult, F.; Fink, M.; Lerosey, G. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature 2015, 525, 77-81.

51. Long, Y.; Ren, J.; Guo, Z.; et al. Designing all-electric subwavelength metasources for near-field photonic routings. Phys. Rev. Lett. 2020, 125, 157401.

52. Huang, X.; Lai, Y.; Hang, Z. H.; Zheng, H.; Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 2011, 10, 582-6.

53. Ma H, Hui Shi J, Cheng Q, Jun Cui T. Experimental verification of supercoupling and cloaking using mu-near-zero materials based on a waveguide. Appl. Phys. Lett. 2013, 103, 021908.

54. Yang, Y.; Liu, Y.; Qin, J.; et al. Magnetically tunable zero-index metamaterials. Photon. Res. 2023, 11, 1613.

55. Yan, W.; Zhou, Z.; Li, H.; Li, Y. Transmission-type photonic doping for high-efficiency epsilon-near-zero supercoupling. Nat. Commun. 2023, 14, 6154.

56. Reshef, O.; De, L. I.; Alam, M. Z.; Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 2019, 4, 535-51.

57. Silveirinha, M.; Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. eLight 2024, 4, 59.

58. Chu, H.; Li, Q.; Liu, B.; et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light. Sci. Appl. 2018, 7, 50.

59. Liberal, I.; Mahmoud, A. M.; Li, Y.; Edwards, B.; Engheta, N. Photonic doping of epsilon-near-zero media. Science 2017, 355, 1058-62.

60. Zhou, Z. H.; Li, H.; Sun, W. Y.; et al. Dispersion coding of ENZ media via multiple photonic dopants. Light-Sci. Appl. 2022, 11, 207.

61. Li, H.; Fu, P.; Zhou, Z.; et al. Performing calculus with epsilon-near-zero metamaterials. Sci. Adv. 2022, 8, eabq6198.

62. Schulz, K. M.; Vu, H.; Schwaiger, S.; et al. Controlling the spontaneous emission rate of quantum wells in rolled-up hyperbolic metamaterials. Phys. Rev. Lett. 2016, 117, 085503.

63. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 1968, 10, 509-14.

64. Shadrivov, I. V.; Sukhorukov, A. A.; Kivshar, Y. S. Complete band gaps in one-dimensional left-handed periodic structures. Phys. Rev. Lett. 2005, 95, 193903.

65. Căbuz, A. I.; Felbacq, D.; Cassagne, D. Homogenization of negative-index composite metamaterials: a two-step approach. Phys. Rev. Lett. 2007, 98, 037403.

66. Zhu, X.; Liang, B.; Kan, W.; Zou, X.; Cheng, J. Acoustic cloaking by a superlens with single-negative materials. Phys. Rev. Lett. 2011, 106, 014301.

67. Shi, X.; Xue, C.; Jiang, H.; Chen, H. Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals. Opt. Express. 2016, 24, 18580-91.

68. Xiao, M.; Zhang, Z.; Chan, C. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys. Rev. X. 2014, 4, 021017.

69. Edwards, B.; Alù, A.; Young, M. E.; Silveirinha, M.; Engheta, N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 2008, 100, 033903.

70. Wang, N.; Zhang, R.; Chan, C. T.; Wang, G. P. Effective medium theory for a photonic pseudospin-1/2 system. Phys. Rev. B. 2020, 102, 094312.

71. Dong, T.; Liang, J.; Camayd-Muñoz, S.; et al. Ultra-low-loss on-chip zero-index materials. Light. Sci. Appl. 2021, 10, 10.

72. Jiang, H.; Liu, W.; Yu, K.; et al. Experimental verification of loss-induced field enhancement and collimation in anisotropic μ-near-zero metamaterials. Phys. Rev. B. 2015, 91, 045302.

73. Li, H.; Zhou, Z.; He, Y.; et al. Geometry-independent antenna based on epsilon-near-zero medium. Nat. Commun. 2022, 13, 3568.

74. Hwang, J. S.; Xu, J.; Raman, A. P. Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero inas photonic structures. Adv. Mater. 2023, 35, e2302956.

75. Liu, Y. Y.; Dong, T.; Qin, X.; et al. High-permittivity ceramics enabled highly homogeneous zero-index metamaterials for high-directivity antennas and beyond. eLight 2024, 4, 59.

76. Zhou, M.; Shi, L.; Yu, Z. F. Extraordinarily large optical cross section for localized single nanoresonator. Phys. Rev. Lett. 2015, 115, 023903.

77. Suchowski, H.; O'Brien, K.; Wong, Z. J.; Salandrino, A.; Yin, X. B.; Zhang, X. Phase mismatch–free nonlinear propagation in optical zero-index materials. Science 2013, 342, 1223-6.

78. Liu, R.; Cheng, Q.; Hand, T.; et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 2008, 100, 023903.

79. Chen, M. L. N.; Bi, Y.; Chan, H. C.; Lin, Z.; Ma, S.; Zhang, S. Anomalous electromagnetic tunneling in bianisotropic ϵ-μ-zero media. Phys. Rev. Lett. 2022, 129, 123901.

80. Luo, J.; Li, J.; Lai, Y. Electromagnetic impurity-immunity induced by parity-time symmetry. Phys. Rev. X. 2018, 8, 031035.

81. Wang, C.; Qian, C.; Hu, H.; et al. Superscattering of light in refractive-index near-zero environments. PIER. 2020, 168, 15-23.

82. Argyropoulos, C.; Chen, P.; D’aguanno, G.; Engheta, N.; Alù, A. Boosting optical nonlinearities in ε-near-zero plasmonic channels. Phys. Rev. B. 2012, 85, 045129.

83. von Neumann J, Wigner EP. Über merkwürdige diskrete eigenwerte. In: Wightman AS, editor. The Collected Works of Eugene Paul Wigner. Berlin: Springer Berlin Heidelberg; 1993. pp. 291-3.

84. Tang, H. N.; DeVault, C.; Camayd-Muñoz, S. A.; Liu, Y. Y.; Jia, D. C. Low-loss zero-index materials. Nano. lett. 2021, 21, 914-20.

85. Minkov, M.; Williamson, I. A. D.; Xiao, M.; Fan, S. Zero-index bound states in the continuum. Phys. Rev. Lett. 2018, 121, 263901.

86. Monticone, F.; Doeleman, H. M.; Den, H. W.; Koenderink, A. F.; Alù, A. Trapping light in plain sight: embedded photonic eigenstates in zero-index metamaterials. Laser. Photonics. Rev. 2018, 12, 1700220.

87. Zanganeh, E.; Sayanskiy, A.; Kosulnikov, S.; Kapitanova, P. Extreme metasurfaces enable targeted and protected wireless energy transfer. Adv. Mater. Technol. 2023, 8, 2202133.

88. Sakotic, Z.; Krasnok, A.; Alú, A.; Jankovic, N. Topological scattering singularities and embedded eigenstates for polarization control and sensing applications. Photon. Res. 2021, 9, 1310-23.

89. Liu, M.; Zhao, C.; Zeng, Y.; Chen, Y.; Zhao, C.; Qiu, C. W. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 2021, 127, 266101.

90. Liu, M.; Xia, S.; Wan, W. J.; et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat. Mater. 2023, 22, 1196.

91. Lio, G. E.; Ferraro, A.; Ritacco, T.; et al. Leveraging on ENZ Metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writing. Adv. Mater. 2021, 33, e2008644.

92. Ferraro, A.; Lio, G. E.; Bruno, M. D. L.; et al. Hybrid camouflaged anticounterfeiting token in a paper substrate. Adv. Mater. Technol. 2023, 8, 2201010.

93. Lio, G. E.; Ferraro, A.; Zappone, B.; et al. Unlocking optical coupling tunability in epsilon-near-zero metamaterials through liquid crystal nanocavities. Adv. Opt. Mater. 2024, 12, 2302483.

94. Lio, G. E.; Ferraro, A.; Kowerdziej, R.; Govorov, A. O.; Wang, Z.; Caputo, R. Engineering fano-resonant hybrid metastructures with ultra-high sensing performances. Adv. Opt. Mater. 2023, 11, 2203123.

95. Lee, D.; So, S.; Hu, G.; et al. Hyperbolic metamaterials: fusing artificial structures to natural 2D materials. eLight 2022, 2, 8.

96. Álvarez-Pérez, G.; Folland, T. G.; Errea, I.; et al. Infrared permittivity of the biaxial van der waals semiconductor α-MoO3 from near- and far-field correlative studies. Adv. Mater. 2020, 32, e1908176.

97. Duan, J.; Alvarez-Pérez, G.; Lanza, C.; et al. Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers. Nat. Mater. 2023, 22, 867-72.

98. Passler, N. C.; Ni, X.; Hu, G.; et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature 2022, 602, 595-600.

99. Matson, J.; Wasserroth, S.; Ni, X.; et al. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat. Commun. 2023, 14, 5240.

100. Jacob, Z.; Kim, J.; Naik, G. V.; Boltasseva, A.; Narimanov, E. E.; Shalaev, V. M. Engineering photonic density of states using metamaterials. Appl. Phys. B. 2010, 100, 215-8.

101. Yang, X.; Yao, J.; Rho, J.; Yin, X.; Zhang, X. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nature. Photon. 2012, 6, 450-4.

102. High, A. A.; Devlin, R. C.; Dibos, A.; et al. Visible-frequency hyperbolic metasurface. Nature 2015, 522, 192-6.

103. Yao, J.; Liu, Z.; Liu, Y.; et al. Optical negative refraction in bulk metamaterials of nanowires. Science 2008, 321, 930.

104. Narimanov, E. E. Photonic hypercrystals. Phys. Rev. X. 2014, 4, 041014.

105. Guan, F.; Guo, X.; Zeng, K.; et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 2023, 381, 766-71.

106. Galfsky, T.; Gu, J.; Narimanov, E. E.; Menon, V. M. Photonic hypercrystals for control of light-matter interactions. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5125-9.

107. Galfsky, T.; Sun, Z.; Considine, C. R.; et al. Broadband enhancement of spontaneous emission in two-dimensional semiconductors using photonic hypercrystals. Nano. Lett. 2016, 16, 4940-5.

108. Xue, C.; Ding, Y.; Jiang, H.; et al. Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials. Phys. Rev. B. 2016, 93, 125310.

109. Hu, S.; Song, J.; Guo, Z.; et al. Omnidirectional nonreciprocal absorber realized by the magneto-optical hypercrystal. Opt. Express. 2022, 30, 12104-19.

110. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-67.

111. Ozawa, T.; Price, H. M.; Amo, A.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006.

112. Wang, Z.; Chong, Y. D.; Joannopoulos, J. D.; Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772-6.

113. Khanikaev, A. B.; Mousavi, S. H.; Tse, W. K.; Kargarian, M.; MacDonald, A. H.; Shvets, G. Photonic topological insulators. Nat. Mater. 2013, 12, 233-9.

114. Rechtsman, M. C.; Zeuner, J. M.; Plotnik, Y.; et al. Photonic Floquet topological insulators. Nature 2013, 496, 196-200.

115. Gao, W.; Yang, B.; Lawrence, M.; Fang, F.; Béri, B.; Zhang, S. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 2016, 7, 12435.

116. Liu, T.; Bai, K.; Zhang, Y.; et al. Finite barrier bound state. Light. Sci. Appl. 2024, 13, 69.

117. Yang, B.; Bi, Y.; Zhang, R. X.; et al. Momentum space toroidal moment in a photonic metamaterial. Nat. Commun. 2021, 12, 1784.

118. Wang, D.; Yang, B.; Zhang, R. Y.; et al. Straight photonic nodal lines with quadrupole berry curvature distribution and superimaging “Fermi Arcs”. Phys. Rev. Lett. 2022, 129, 043602.

119. Wang, D.; Jia, H.; Yang, Q.; Hu, J.; Zhang, Z. Q.; Chan, C. T. Intrinsic triple degeneracy point bounded by nodal surfaces in chiral photonic crystal. Phys. Rev. Lett. 2023, 130, 203802.

120. Deng, W. M.; Chen, Z. M.; Li, M. Y.; et al. Ideal nodal rings of one-dimensional photonic crystals in the visible region. Light. Sci. Appl. 2022, 11, 134.

121. Chen, Z.; Jin, L.; Deng, W.; Chen, W.; Jiang, S.; Dong, J. Dual-polarization topological interface states in ridge photonic crystals. ACS. Photonics. 2024, 11, 2351-8.

122. Hu, S.; Guo, Z.; Liu, W.; Chen, S.; Chen, H. Hyperbolic metamaterial empowered controllable photonic Weyl nodal line semimetals. Nat. Commun. 2024, 15, 2773.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/