REFERENCES
1. Chen, M.; Rao, P.; Miao, Z.; et al. Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction. Microstructures 2023, 3, 2023025.
2. Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries. Nano. Mater. Sci. 2023, 5, 189-201.
3. Geng, X.; Hou, X.; He, X.; Fan, H. J. Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy. Mater. 2024, 14, 2304094.
4. Zhong, Y.; Cao, C.; Zhao, L.; Tadé, M. O.; Shao, Z. Optimization of two-dimensional solid-state electrolyte-anode interface by integrating zinc into composite anode with dual-conductive phases. Green. Carbon. 2024, 2, 94-100.
5. Yang, T.; Niu, Y.; Liu, Q.; Xu, M. Cathode host engineering for non-lithium (Na, K and Mg) sulfur/selenium batteries: a state-of-the-art review. Nano. Mater. Sci. 2023, 5, 119-40.
6. Khan, Z.; Kumar, D.; Crispin, X. Does water-in-salt electrolyte subdue issues of Zn batteries? Adv. Mater. 2023, 35, e2300369.
7. Du, D.; Zeng, L.; Lan, N.; et al. Understanding and mastering multiphysical fields toward dendrite-free aqueous zinc batteries. Adv. Energy. Mater. 2024, 14, 2403153.
8. Li, H.; Li, S.; Hou, R.; et al. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem. Soc. Rev. 2024, 53, 7742-83.
9. Li, D.; Cao, L.; Deng, T.; Liu, S.; Wang, C. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 2021, 60, 13035-41.
10. Wu, M.; Wang, X.; Zhang, F.; Xiang, Q.; Li, Y.; Guo, J. Highly reversible and stable Zn metal anodes realized using a trifluoroacetamide electrolyte additive. Energy. Environ. Sci. 2024, 17, 619-29.
11. Cao, L.; Li, D.; Hu, E.; et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404-9.
12. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.
13. Yan, L.; Zhang, S.; Kang, Q.; et al. Iodine conversion chemistry in aqueous batteries: challenges, strategies, and perspectives. Energy. Storage. Mater. 2023, 54, 339-65.
14. Li, X.; Li, M.; Huang, Z.; et al. Activating the I0/I+ redox couple in an aqueous I2-Zn battery to achieve a high voltage plateau. Energy. Environ. Sci. 2021, 14, 407-13.
15. Zou, Y.; Liu, T.; Du, Q.; et al. A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 2021, 12, 170.
16. Wang, M.; Meng, Y.; Sajid, M.; et al. Bidentate coordination structure facilitates high-voltage and high-utilization aqueous Zn-I2 batteries. Angew. Chem. Int. Ed. 2024, 136, e202404784.
18. Whitaker, R.; Ambrose, J.; Hickam, C. Iodine monochloride and iodine trichloride complexes with heterocyclic amines. J. Inorg. Nucl. Chem. 1961, 17, 254-6.
19. Zong, W.; Li, J.; Zhang, C.; et al. Dynamical Janus interface design for reversible and fast-charging Zinc-iodine battery under extreme operating conditions. J. Am. Chem. Soc. 2024, 146, 21377-88.
20. Tian, Z.; Guo, W.; Shi, Z.; et al. The role of hydrogen bonding in aqueous batteries: correlating molecular-scale interactions with battery performance. ACS. Energy. Lett. 2024, 9, 5179-205.
21. Sheng, D.; Liu, X.; Yang, Z.; et al. Hydrogen bond network regulation in electrolyte structure for Zn-based aqueous batteries. Adv. Funct. Mater. 2024, 34, 2402014.
22. Hao, J.; Zhang, S.; Wu, H.; Yuan, L.; Davey, K.; Qiao, S. Z. Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 2024, 53, 4312-32.
24. Li, D.; Zhu, Y.; Cheng, L.; et al. A MXene modulator enabled high-loading iodine composite cathode for stable and high-energy-density Zn-I2 battery. Adv. Energy. Mater. 2025, 15, 2404426.
25. Wang, Z.; Diao, J.; Burrow, J. N.; et al. Urea-modified ternary aqueous electrolyte with tuned intermolecular interactions and confined water activity for high-stability and high-voltage Zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2304791.
26. Zhang, R.; Pang, W. K.; Vongsvivut, J.; et al. Weakly solvating aqueous-based electrolyte facilitated by a soft co-solvent for extreme temperature operations of zinc-ion batteries. Energy. Environ. Sci. 2024, 17, 4569-81.
27. Tao, L.; Lu, X.; Qu, K.; Zeng, Y.; Miller, M. B.; Liu, J. Highly solubilized urea as effective proton donor-acceptors for durable zinc-ion storage beyond single-anion selection criteria. Small 2024, 20, e2311205.
28. Tan, H.; Lu, K.; Yuan, G.; et al. Polydentate ligand stabilizes electrolyte and interface layer for anti-corrosion and selective-deposited Zn metal aqueous batteries. Adv. Funct. Materials. . DOI: 10.1002/adfm.202423945.
29. Hao, J.; Yuan, L.; Ye, C.; et al. Boosting Zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 2021, 60, 7366-75.
30. Tan, Y.; Pu, J.; Li, H.; Chao, D. Water molecular activity management towards stable Zn anodes. Sci. China. Chem. 2024, 67, 4085-97.
31. Zhang, J.; Huang, W.; Li, L.; et al. Nonepitaxial electrodeposition of (002)-textured Zn anode on textureless substrates for dendrite-free and hydrogen evolution-suppressed Zn batteries. Adv. Mater. 2023, 35, e2300073.
32. Aslam, M. K.; Niu, Y.; Hussain, T.; et al. How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano. Energy. 2021, 86, 106142.
33. Fu, Q.; Zhang, W.; Liu, X.; et al. Dynamic imine chemistry enables paintable biogel electrolytes to shield on-body zinc-ion batteries from interfacial interference. J. Am. Chem. Soc. 2024, 146, 34950-61.
34. Xu, X.; Song, M.; Li, M.; et al. A novel bifunctional Zinc gluconate electrolyte for a stable Zn anode. Chem. Eng. J. 2023, 454, 140364.
35. Bu, F.; Sun, Z.; Zhou, W.; et al. Reviving Zn0 dendrites to electroactive Zn2+ by mesoporous MXene with active edge sites. J. Am. Chem. Soc. 2023, 145, 24284-93.
36. Ma, Y.; Ma, Q.; Liu, Y.; et al. Multiphilic-Zn group “adhesion” strategy toward highly stable and reversible zinc anodes. Energy. Storage. Mater. 2023, 63, 103032.
37. Yan, T.; Liu, S.; Li, J.; et al. Constructing a topologically adaptable solid electrolyte interphase for a highly reversible zinc anode. ACS. Nano. 2024, 18, 3752-62.
38. Li, W.; Kong, W.; Liu, W.; et al. Ternary eutectic electrolytes attune the electrode/electrolyte interphase layer toward long-life zinc ion batteries. Energy. Storage. Mater. 2024, 65, 103103.
39. Chen, R.; Zhang, W.; Guan, C.; et al. Rational design of an in-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions. Angew. Chem. Int. Ed. 2024, 63, e202401987.







