REFERENCES

1. Ke, Y.; Chen, J.; Lin, G.; et al. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy. Mater. 2019, 9, 1902066.

2. Ke, Y.; Zhou, C.; Zhou, Y.; Wang, S.; Chan, S. H.; Long, Y. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 2018, 28, 1800113.

3. Chen, X.; Luo, L.; Zeng, Z.; et al. Bio-inspired flexible vibration visualization sensor based on piezo-electrochromic effect. J. Materiomics. 2020, 6, 643-50.

4. Kim, K.; Jeong, S.; Koo, B.; Ahn, H. Surface amending effect of N-doped carbon-embedded NiO films for multirole electrochromic energy-storage devices. Appl. Surf. Sci. 2021, 537, 147902.

5. Wu, X.; Lin, J.; Xu, Z.; et al. Defect management and multi-mode optoelectronic manipulations via photo-thermochromism in smart windows. Laser. Photonics. Rev. 2021, 15, 2100211.

6. Li, J.; Qu, W.; Daniels, J.; et al. Lead zirconate titanate ceramics with aligned crystallite grains. Science 2023, 380, 87-93.

7. Wang, L. V.; Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods. 2016, 13, 627-38.

8. Yan, P.; Qin, Y.; Xu, Z.; et al. H Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity. ACS. Appl. Mater. Interfaces. 2021, 13, 54210-6.

9. Gao, X.; Qiao, L.; Qiu, C.; et al. A robust, low-voltage driven millirobot based on transparent ferroelectric crystals. Appl. Phys. Lett. 2022, 120, 032902.

10. Fang, Z.; Jiang, X.; Tian, X.; et al. Ultratransparent PMN-PT electro-optic ceramics and its application in optical communication. Adv. Opt. Mater. 2021, 9, 2002139.

11. Deng, C.; Ye, L.; He, C.; et al. Reporting excellent transverse piezoelectric and electro-optic effects in transparent rhombohedral PMN-PT single crystal by engineered domains. Adv. Mater. 2021, 33, e2103013.

12. Sun, E.; Cao, W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124-210.

13. Qiu, C.; Wang, B.; Zhang, N.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350-4.

14. Huangfu, G.; Zeng, K.; Wang, B.; et al. Giant electric field-induced strain in lead-free piezoceramics. Science 2022, 378, 1125-30.

15. Lin, J.; Wang, Y.; Xiong, R.; et al. Tailoring micro-structure of eco-friendly temperature-insensitive transparent ceramics achieving superior piezoelectricity. Acta. Mater. 2022, 235, 118061.

16. Ren, X.; Peng, Z.; Chen, B.; et al. A compromise between piezoelectricity and transparency in KNN-based ceramics: the dual functions of Li2O addition. J. Eur. Ceram. Soc. 2020, 40, 2331-7.

17. Ren, X.; Chai, Q.; Zhao, X.; et al. Relaxor behaviors and electric response in transparent 0. Ceram. Int. 2019, 45, 3961-8.

18. Kosec, M.; Bobnar, V.; Hrovat, M.; Bernard, J.; Malic, B.; Holc, J. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. J. Mater. Res. 2004, 19, 1849-54.

19. Du, H.; Zhou, W.; Zhu, D.; et al. Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. J. Am. Ceram. Soc. 2008, 91, 2903-9.

20. Li, F.; Kwok, K.; Gupta, S. K0.5Na0.5NbO3-based lead-free transparent electro-optic ceramics prepared by pressureless sintering. J. Am. Ceram. Soc. 2013, 96, 3557-62.

21. Li, F.; Kwok, K. Fabrication of transparent electro-optic (K0.5Na0.5)1-xLixNb1-xBixO3 lead-free ceramics. J. Eur. Ceram. Soc. 2013, 33, 123-30.

22. Qu, B.; Du, H.; Yang, Z. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C. 2016, 4, 1795-803.

23. Hutchinson, M.; Widom, M. VASP on a GPU: application to exact-exchange calculations of the stability of elemental boron. Comput. Phys. Commun. 2012, 183, 1422-6.

24. Hacene, M.; Anciaux-Sedrakian, A.; Rozanska, X.; Klahr, D.; Guignon, T.; Fleurat-Lessard, P. Accelerating VASP electronic structure calculations using graphic processing units. J. Comput. Chem. 2012, 33, 2581-9.

25. Liu, C.; Wang, Q.; Wu, X.; et al. Boosting upconversion photoluminescence and multielectrical properties via er-doping-modulated vacancy control in Ba0.85Ca0.15Ti0.9Zr0.1O3. ACS. Omega. 2019, 4, 11004-13.

26. Dai, Z.; Li, D.; Zhou, Z.; et al. A strategy for high performance of energy storage and transparency in KNN-based ferroelectric ceramics. Chem. Eng. J. 2022, 427, 131959.

27. Rahman, A.; Park, S.; Min, Y.; et al. An easy approach to obtain large piezoelectric constant in high-quality transparent ceramics by normal sintering process in modified potassium sodium niobate ceramics. J. Eur. Ceram. Soc. 2020, 40, 2989-95.

28. Sun, H.; Liu, J.; Wang, X.; Zhang, Q.; Hao, X.; An, S. (K,Na)NbO3 ferroelectrics: A new class of solid-state photochromic materials with reversible luminescence switching behavior. J. Mater. Chem. C. 2017, 5, 9080-7.

29. Zhang, Q.; Chen, K.; Wang, L.; Sun, H.; Wang, X.; Hao, X. A highly efficient, orange light-emitting (K0.5Na0.5)NbO3:Sm3+/Zr4+ lead-free piezoelectric material with superior water resistance behavior. J. Mater. Chem. C. 2015, 3, 5275-84.

30. Qiao, X.; Sheng, A.; Wu, D.; et al. A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties. Chem. Eng. J. 2021, 408, 127368.

31. Yang, D.; Yang, Z.; Zhang, X.; Wei, L.; Chao, X.; Yang, Z. High transmittance in lead-free lanthanum modified potassium-sodium niobate ceramics. J. Alloy. Compd. 2017, 716, 21-9.

32. Chao, X.; Ren, X.; Zhang, X.; et al. Excellent optical transparency of potassium-sodium niobate-based lead-free relaxor ceramics induced by fine grains. J. Eur. Ceram. Soc. 2019, 39, 3684-92.

33. Zhao, X.; Chao, X.; Wu, D.; Liang, P.; Yang, Z. Simultaneous realization of high transparency and piezoelectricity in low symmetry KNN -based ceramics. J. Am. Ceram. Soc. 2019, 102, 3498-509.

34. Liu, H.; Wang, J.; Wang, H.; Xu, J.; Zhou, C.; Qiu, W. Er3+ and Sr(Bi0.5Nb0.5)O3-modified (K0.5Na0.5)NbO3: a new transparent fluorescent ferroelectric ceramic with high light transmittance and good luminescence performance. Ceram. Int. 2022, 48, 4230-7.

35. Cheng, L.; Wang, K.; Yao, F.; Zhu, F.; Li, J.; Zhang, S. Composition inhomogeneity due to alkaline volatilization in Li-modified (K, Na)NbO3 lead-free piezoceramics. J. Am. Ceram. Soc. 2013, 96, 2693-5.

36. Yang, W.; Li, P.; Wu, S.; Li, F.; Shen, B.; Zhai, J. A study on the relationship between grain size and electrical properties in (K, Na)NbO3-based lead-free piezoelectric ceramics. Adv. Elect. Mater. 2019, 5, 1900570.

37. Ren, X.; Jin, L.; Peng, Z.; et al. Regulation of energy density and efficiency in transparent ceramics by grain refinement. Chem. Eng. J. 2020, 390, 124566.

38. Pinho, R.; Tkach, A.; Zlotnik, S.; et al. Spark plasma texturing: a strategy to enhance the electro-mechanical properties of lead-free potassium sodium niobate ceramics. Appl. Mater. Today. 2020, 19, 100566.

39. Yang, Z.; Du, H.; Qu, S.; et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A. 2016, 4, 13778-85.

40. Li, P.; Fu, Z.; Wang, F.; et al. High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta. Mater. 2020, 199, 542-50.

41. Zhang, X.; Yang, D.; Yang, Z.; et al. Transparency of K0.5N0.5NbO3-Sr(Mg1/3Nb2/3)O3 lead-free ceramics modulated by relaxor behavior and grain size. Ceram. Int. 2016, 42, 17963-71.

42. Yang, D.; Ma, C.; Yang, Z.; et al. Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics. Ceram. Int. 2016, 42, 4648-57.

43. Kwok, K. W.; Li, F.; Lin, D. A novel lead-free transparent ceramic with high electro-optic coefficient. Funct. Mater. Lett. 2011, 4, 237-40.

44. Wu, X.; Lu, S.; Kwok, K. Photoluminescence, electro-optic response and piezoelectric properties in pressureless-sintered Er-doped KNN-based transparent ceramics. J. Alloy. Compd. 2017, 695, 3573-8.

45. Zhao, X.; Chai, Q.; Chen, B.; Chao, X.; Yang, Z. Improved transmittance and ferroelectric properties realized in KNN ceramics via SAN modification. J. Am. Ceram. Soc. 2018, 101, 5127-37.

46. Liu, Y.; Yi, W.; Yan, C.; Ma, J.; Fan, L. A novel transparent material based on KNN ferroelectric ceramics. Ferroelectrics 2021, 573, 173-8.

47. Chai, Q.; Zhao, X.; Chao, X.; Yang, Z. Enhanced transmittance and piezoelectricity of transparent K0.5Na0.5NbO3 ceramics with Ca(Zn1/3Nb2/3)O3 additives. RSC. Adv. 2017, 7, 28428-37.

48. Huang, X.; Dong, G.; Zhang, Y.; et al. Decoding the intrinsic frequency response behaviors of piezoelectric output current toward advanced sensing and monitoring applications. Nano. Energy. 2025, 134, 110544.

49. Chen, C.; Zhao, S.; Pan, C.; et al. A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric" signal. Nat. Commun. 2022, 13, 1391.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/