REFERENCES
1. Chippindale AM, Hibble SJ, Bilbé EJ, et al. Mixed copper, silver, and gold cyanides, (MxM′1-x)CN: tailoring chain structures to influence physical properties. J Am Chem Soc 2012;134:16387-400.
2. Guo J, Fu S, Deng Y, et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022;606:909-16.
3. Ha CS, Plesha ME, Lakes RS. Simulations of thermoelastic triangular cell lattices with bonded joints by finite element analysis. Extreme Mech Lett 2017;12:101-7.
4. Hu P, Chen J, Sun X, et al. Zero thermal expansion in (1-x)PbTiO3-xBi(Mg,Ti)1/2O3 piezoceramics. J Mater Chem 2009;19:1648-52.
5. Jiang X, Molokeev MS, Gong P, et al. Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13. Adv Mater 2016;28:7936-40.
6. Kumar PS, Kini NS, Umarji AM, Sunandana CS. Search for a novel zero thermal expansion material: dilatometry of the AgI-CuI system. J Mater Sci 2006;41:3861-5.
7. Lehman J, Lakes R. Stiff lattices with zero thermal expansion and enhanced stiffness via rib cross section optimization. Int J Mech Mater Des 2013;9:213-25.
8. Loring KJ, Ortega LF, Monroe JA, et al. Hydroxide catalysis bonding of Allvar alloy 30, a negative thermal expansion alloy. J Astron Telesc Instrum Syst 2020;6:015007.
9. Monroe JA, East M, Hull T. ALLVAR alloy athermalization: a novel and cost-effective alternative for small to moderate sized space telescopes. Soc Photo Opt Instrum Eng 2021;11820:118200B.
10. Monroe JA, McAllister JS, Content DS, Zgarba J. Negative thermal expansion ALLVAR alloys for smaller optics. Soc Photo Opt Instrum Eng 2020;11310:1131013.
11. Kulkarni S, Umińska AA, Sanjuán J, et al. Characterization of dimensional stability for materials used in ultra-stable structures. Soc Photo Opt Instrum Eng 2021;11820:1182008.
12. Monroe JA, McAllister JS, Content DS, Zgarba J, Huerta X, Karaman I. Negative thermal expansion ALLVAR alloys for telescopes. Soc Photo Opt Instrum Eng 2018;10706:107060R.
13. Zhao Y, Huang R, Li S, et al. Giant isotropic magnetostriction in NaZn13-type LaFe13-xAlx compounds. Appl Phys Lett 2017;110:011906.
14. Lehman J, Lakes R. Stiff, strong zero thermal expansion lattices via the Poisson effect. J Mater Res 2013;28:2499-508.
15. Chen R, Zhu Y, Chen L, et al. A near-zero thermal expansion material: AlMoVO7. Chem Phys Lett 2021;769:138425.
16. Iwai Y, Nakaya M, Ohtsu H, Le Ouay B, Ohtani R, Ohba M. Zero area thermal expansion of honeycomb layers via double distortion relaxation in (PPh4)[Cu2(CN)3]. CrystEngComm 2022;24:5880-4.
17. Jiang X, Wang N, Dong L, et al. Integration of negative, zero and positive linear thermal expansion makes borate optical crystals light transmission temperature-independent. Mater Horiz 2022;9:2207-14.
18. Liu Z, Yang J, Yang L, et al. Argentophilicity induced anomalous thermal expansion behavior in a 2D silver squarate. Inorg Chem Front 2021;8:1567-73.
19. Yu C, Lin K, Cao Y, et al. Two-dimensional zero thermal expansion in low-cost MnxFe5-xSi3 alloys via integrating crystallographic texture and magneto-volume effect. Sci China Mater 2022;65:1912-9.
20. Lin K, Li W, Yu C, et al. High performance and low thermal expansion in Er-Fe-V-Mo dual-phase alloys. Acta Mater 2020;198:271-80.
21. Yu C, Lin K, Jiang S, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite. Nat Commun 2021;12:4701.
22. Zhang H, Xing C, Zhou H, et al. Giant anisotropic magnetocaloric effect by coherent orientation of crystallographic texture and rare-earth ion moments in HoNiSi ploycrystal. Acta Mater 2020;193:210-20.
23. Özbilgin CE, Kobayashi K, Tamura S, Imanaka N, Suzuki TS. Anisotropic thermal expansion and ionic conductivity of a crystal-oriented, Mg2+ - conducting NASICON-type solid electrolyte. Ceram Int 2022;48:10733-40.
24. Shan X, Huang R, Han Y, Huang C, Li L. Preparation and property study of La(Fe, Si, Co)13/Cu composite with nearly zero thermal expansion behavior. J Alloys Compd 2015;648:463-6.
25. Zhou H, Tao K, Chen B, et al. Low-melting metal bonded MM′X/In composite with largely enhanced mechanical property and anisotropic negative thermal expansion. Acta Mater 2022;229:117830.
26. Yang Z, Zhang Y, Zhang Z, Liu S. Buckling enhancement of tubular metamaterial with axial zero thermal expansion by integrating two adjustment mechanisms. Mater Res Express 2022;9:045801.
27. Li L, Gong Y, Wang C, Zhang Y, Xu F. Achievement of zero thermal expansion covering room temperature in the La(Fe,Al)13-based bulks with reduced annealing time. Phys B Condens Matter 2022;636:413897.
28. Cao Y, Lin K, Khmelevskyi S, et al. Ultrawide temperature range super-invar behavior of R2(Fe,Co)17 materials (R = rare earth). Phys Rev Lett 2021;127:055501.
29. Rong MH, Chen XL, Wang J, Rao GH, Zhou HY. Thermodynamic re-assessment of the Fe-Dy and Fe-Tb binary systems. Calphad 2017;59:154-63.
30. Zhao YY, Hu FX, Bao LF, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J Am Chem Soc 2015;137:1746-9.
31. Yu C, Lin K, Zhang Q, et al. An isotropic zero thermal expansion alloy with super-high toughness. Nat Commun 2024;15:2252.
32. Wang J, Gong Y, Liu J, et al. Balancing negative and positive thermal expansion effect in dual-phase La(Fe,Si)13/α-Fe in-situ composite with improved compressive strength. J Alloys Compd 2018;769:233-8.
33. Song Y, Qiao Y, Huang Q, et al. Opposite thermal expansion in isostructural noncollinear antiferromagnetic compounds of Mn3A
34. Song Y, Chen J, Liu X, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J Am Chem Soc 2018;140:602-5.
35. Liu J, Gong Y, Wang J, et al. Realization of zero thermal expansion in La(Fe,Si)13-based system with high mechanical stability. Mater Des 2018;148:71-7.
36. Dan S, Mukherjee S, Mazumdar C, Ranganathan R. Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy. RSC Adv 2016;6:94809-14.
37. Ying H, Yang X, He H, et al. Formation of strong and ductile FeNiCoCrB network-structured high-entropy alloys by fluxing. Microstructures 2023;3:2023018.