REFERENCES

1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.

2. Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473-86.

3. Song, H.; Meng, X.; Wang, S.; et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 2019, 141, 20507-15.

4. Yoshino, S.; Takayama, T.; Yamaguchi, Y.; Iwase, A.; Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 2022, 55, 966-77.

5. Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

6. Abe, R.; Higashi, M.; Domen, K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 2010, 132, 11828-9.

7. Zhao, L.; Hou, H.; Wang, S.; et al. Engineering Co single atoms in ultrathin BiOCl nanosheets for boosted CO2 photoreduction. Adv. Funct. Mater. 2025, 35, 2416346.

8. Zong, X.; Yan, H.; Wu, G.; et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176-7.

9. Takanabe, K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017, 7, 8006-22.

10. Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed. 2008, 47, 9730-3.

11. Wang, C.; Thompson, R. L.; Ohodnicki, P.; Baltrus, J.; Matranga, C. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J. Mater. Chem. 2011, 21, 13452-7.

12. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269-71.

13. Jiang, Y.; Sun, H.; Guo, J.; et al. Vacancy engineering in 2D transition metal chalcogenide photocatalyst: structure modulation, function and synergy application. Small 2024, 20, 2310396.

14. Niu, M.; Huang, F.; Cui, L.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/alpha-Fe2O3 semiconductor nanoheterostructures. ACS Nano2010, 4, 681-8.

15. Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739-50.

16. Lin, R.; Wan, J.; Xiong, Y.; et al. Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis. J. Am. Chem. Soc. 2018, 140, 9078-82.

17. Lin, R.; Chen, H.; Cui, T.; et al. Optimization of p-type Cu2O nanocube photocatalysts based on electronic effects. ACS Catal. 2023, 13, 11352-61.

18. Ran, J.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

19. Ou, W.; Zhou, B.; Shen, J.; Zhao, C.; Li, Y. Y.; Lu, J. Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. iScience 2021, 24, 101982.

20. Zhou, L.; Huang, Q.; Xia, Y. Plasmon-induced hot electrons in nanostructured materials: generation, collection, and application to photochemistry. Chem. Rev. 2024, 124, 8597-619.

21. Lin, R.; Fan, D.; Berger, L. M.; et al. Light tuning CO/H2 composition on Ag: unraveling CO2 mass transfer and electron-phonon coupling in plasmon-enhanced electrocatalysis. Nano Res. 2025, 18, 94907042.

22. Fu, Y.; Sun, D.; Chen, Y.; et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 2012, 51, 3364-7.

23. Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Metal-organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 2023, 123, 445-90.

24. Wang, Q.; Gao, Q.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 2020, 7, 300-39.

25. Silva, C. G.; Corma, A.; García, H. Metal-organic frameworks as semiconductors. J. Mater. Chem. 2010, 20, 3141-56.

26. Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106-12.

27. Kippelen, B.; Brédas, J. L. Organic photovoltaics. Energy Environ. Sci. 2009, 2, 251-61.

28. Ma, Z.; Zhao, B.; Gao, H.; Gong, Y.; Yu, R.; Tan, Z. Recent advances of crosslinkable organic semiconductors in achieving solution-processed and stable optoelectronic devices. J. Mater. Chem. A2022, 10, 18542-76.

29. Jagoo, Z.; Lamport, Z. A.; Jurchescu, O. D.; McNeil, L. E. Efficiency enhancement of organic thin-film phototransistors due to photoassisted charge injection. Appl. Phys. Lett. 2021, 119, 073302.

30. Fu, J.; Fong, P. W. K.; Liu, H.; et al. 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition. Nat. Commun. 2023, 14, 1760.

31. Chen, L. X. Organic solar cells: recent progress and challenges. ACS Energy Lett.2019, 4, 2537-9.

32. Brütting, W. Physics of Organic Semiconductors; Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

33. Kuramochi, Y.; Fujisawa, Y.; Satake, A. Photocatalytic CO2 reduction mediated by electron transfer via the excited triplet state of Zn(II) porphyrin. J. Am. Chem. Soc. 2020, 142, 705-9.

34. Li, L.; Lo, W. Y.; Cai, Z.; Zhang, N.; Yu, L. Donor-acceptor porous conjugated polymers for photocatalytic hydrogen production: the importance of acceptor comonomer. Macromolecules 2016, 49, 6903-9.

35. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159-329.

36. Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42, 548-68.

37. Huang, F.; Anslyn, E. V. Introduction: supramolecular chemistry. Chem. Rev. 2015, 115, 6999-7000.

38. Vallavoju, N.; Sivaguru, J. Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem. Soc. Rev. 2014, 43, 4084-101.

39. Dumele, O.; Chen, J.; Passarelli, J. V.; Stupp, S. I. Supramolecular energy materials. Adv. Mater. 2020, 32, 1907247.

40. Nikoloudakis, E.; López-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chem. Soc. Rev. 2022, 51, 6965-7045.

41. Lopes, J. M. S.; Batista, A. A.; Araujo, P. T.; Neto, N. M. B. Supramolecular porphyrin as an improved photocatalyst for chloroform decomposition. RSC Adv. 2023, 13, 5473-82.

42. Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, 40, 1564-79.

43. Sun, Y.; Wang, D.; Zhu, Y. Deep degradation of pollutants by perylene diimide supramolecular photocatalyst with unique Bi-planar π-π conjugation. Chem. Eng. J. 2022, 438, 135667.

44. Kong, K.; Zhang, S.; Chu, Y.; et al. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem. Commun. 2019, 55, 8090-3.

45. Li, Y.; Zhang, X.; Liu, D. Recent developments of perylene diimide (PDI) supramolecular photocatalysts: a review. J. Photoch. Photobio. C2021, 48, 100436.

46. Tamaki, Y.; Ishitani, O. Supramolecular photocatalysts for the reduction of CO2. ACS Catal. 2017, 7, 3394-409.

47. O’Neill, J. S.; Kearney, L.; Brandon, M. P.; Pryce, M. T. Design components of porphyrin-based photocatalytic hydrogen evolution systems: a review. Coord. Chem. Rev. 2022, 467, 214599.

48. Wang, J.; Zhong, Y.; Wang, L.; et al. Morphology-controlled synthesis and metalation of porphyrin nanoparticles with enhanced photocatalytic performance. Nano Lett. 2016, 16, 6523-8.

49. Zhang, N.; Wang, L.; Wang, H.; et al. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560-6.

50. Moon, H. S.; Yong, K. Noble-metal free photocatalytic hydrogen generation of CuPc/TiO2 nanoparticles under visible-light irradiation. Appl. Surf. Sci. 2020, 530, 147215.

51. Genc, E.; Yüzer, A. C.; Yanalak, G.; et al. The effect of central metal in phthalocyanine for photocatalytic hydrogen evolution via artificial photosynthesis. Renew. Energy2020, 162, 1340-6.

52. Han, J.; Liu, K.; Chang, R.; Zhao, L.; Yan, X. Photooxidase-mimicking nanovesicles with superior photocatalytic activity and stability based on amphiphilic amino acid and phthalocyanine co-assembly. Angew. Chem. Int. Ed. 2019, 58, 2000-4.

53. Müllen, K.; Scherf, U. Conjugated polymers: where we come from, where we stand, and where we might go. Macromol. Chem. Phys. 2023, 224, 2200337.

54. Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168-90.

55. Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. Poly(p-phenylene)-catalysed photoreduction of water to hydrogen. J. Chem. Soc. Chem. Commun. 1985, 8, 474-5.

56. Sprick, R. S.; Aitchison, C.M.; Berardo, E.; et al. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. J. Mater. Chem. A2018, 6, 11994-2003.

57. Chang, C. L.; Lin, W. C.; Ting, L. Y.; et al. Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution. Nat. Commun. 2022, 13, 5460.

58. Diao, R.; Ye, H.; Yang, Z.; Zhang, S.; Kong, K.; Hua, J. Significant improvement of photocatalytic hydrogen evolution of diketopyrrolopyrrole-based donor-acceptor conjugated polymers through side-chain engineering. Polym. Chem. 2019, 10, 6473-80.

59. Hu, Z.; Wang, Z.; Zhang, X.; et al. Conjugated polymers with oligoethylene glycol side chains for improved photocatalytic hydrogen evolution. iScience 2019, 13, 33-42.

60. Lyons, R. J.; Yang, Y.; McQueen, E.; et al. Polymer photocatalysts with side chain induced planarity for increased activity for sacrificial hydrogen production from water. Adv. Energy Mater. 2024, 14, 2303680.

61. Anus, A.; Park, S. The synthesis and key features of 3D carbon nitrides (C3N4) used for CO2 photoreduction. Chem. Eng. J. 2024, 486, 150213.

62. Chu, S.; Wang, Y.; Guo, Y.; et al. Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912-9.

63. Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

64. Ding, Z.; Chen, X.; Antonietti, M.; Wang, X. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation. ChemSusChem 2011, 4, 274-81.

65. Harikrishnan, L.; Rajaram, M.; Natarajan, A.; Rajaram, A. Boron-doped exfoliated g-C3N4 nanosheet-based phosphors for white light-emission and photocatalytic degradation. ACS Appl. Nano Mater. 2023, 6, 16947-59.

66. Liu, G.; Niu, P.; Sun, C.; et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642-8.

67. Zhu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS Appl. Mater. Interfaces2015, 7, 16850-6.

68. Naveed, A. B.; Javaid, A.; Zia, A.; et al. TiO2/g-C3N4 binary composite as an efficient photocatalyst for biodiesel production from jatropha oil and dye degradation. ACS Omega2023, 8, 2173-82.

69. Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-70.

70. Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053-63.

71. Prakash, K.; Deka, R.; Mobin, S. M. A review on covalent organic frameworks: exploration of their growing potential as porous materials in photocatalytic applications. Inorg. Chem. Front. 2024, 11, 6711-52.

72. Haase, F.; Lotsch, B. V. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 8469-500.

73. Yin, Y.; Zhang, Y.; Zhou, X.; et al. Ultrahigh-surface area covalent organic frameworks for methane adsorption. Science 2024, 386, 693-6.

74. Wan, S.; Gándara, F.; Asano, A.; et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 2011, 23, 4094-7.

75. Chen, Y.; Jiang, D. Photocatalysis with covalent organic frameworks. Acc. Chem. Res. 2024, 57, 3182-93.

76. Yang, Q.; Luo, M.; Liu, K.; Cao, H.; Yan, H. Covalent organic frameworks for photocatalytic applications. Appl. Catal. B: Environ. 2020, 276, 119174.

77. Yang, J.; Chen, Z.; Zhang, L.; Zhang, Q. Covalent organic frameworks for photocatalytic reduction of carbon dioxide: a review. ACS Nano2024, 18, 21804-35.

78. Wang, H.; Wang, H.; Wang, Z.; et al. Covalent organic framework photocatalysts: structures and applications. Chem. Soc. Rev. 2020, 49, 4135-65.

79. Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789-93.

80. Gunawan, M.; Zhou, S.; Gunawan, D.; et al. Ferroelectric materials as photoelectrocatalysts: photoelectrode design rationale and strategies. J. Mater. Chem. A2025, 13, 1612-40.

81. Yao, L.; Rahmanudin, A.; Guijarro, N.; Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 2018, 8, 1802585.

82. McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics: Fundamentals and Applications, 2nd ed.; Academic Press, 2012.

83. Maeda, K.; Takata, T.; Hara, M.; et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 2005, 127, 8286-7.

84. Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66-77.

85. Wang, S. J.; Hutsch, S.; Talnack, F.; et al. Band structure engineering in highly crystalline organic semiconductors. Chem. Mater. 2023, 35, 7867-74.

86. Ortstein, K.; Hutsch, S.; Hambsch, M.; et al. Band gap engineering in blended organic semiconductor films based on dielectric interactions. Nat. Mater. 2021, 20, 1407-13.

87. Wang, Y.; Silveri, F.; Bayazit, M. K.; et al. Bandgap engineering of organic semiconductors for highly efficient photocatalytic water splitting. Adv. Energy Mater. 2018, 8, 1801084.

88. Yu, H.; Wang, D. Suppressing the excitonic effect in covalent organic frameworks for metal-free hydrogen generation. JACS Au2022, 2, 1848-56.

89. Van der Holst, J. J. M.; Van Oost, F. W. A.; Coehoorn, R.; Bobbert, P. A. Electron-hole recombination in disordered organic semiconductors: validity of the Langevin formula. Phys. Rev. B2009, 80, 235202.

90. Grinolds, D. D. W.; Brown, P. R.; Harris, D. K.; Bulovic, V.; Bawendi, M. G. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models. Nano Lett. 2015, 15, 21-6.

91. Wang, C.; Zhang, Z.; Pejić, S.; et al. High dielectric constant semiconducting poly(3-alkylthiophene)s from side chain modification with polar sulfinyl and sulfonyl groups. Macromolecules 2018, 51, 9368-81.

92. Armin, A.; Stoltzfus, D. M.; Donaghey, J. E.; et al. Engineering dielectric constants in organic semiconductors. J. Mater. Chem. C2017, 5, 3736-47.

93. La, D. D.; Dang, T. D.; Le, P. C.; et al. Self-assembly of monomeric porphyrin molecules into nanostructures: self-assembly pathways and applications for sensing and environmental treatment. Environ. Technol. Innov. 2023, 29, 103019.

94. Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-assembly and self-metallization of porphyrin nanosheets. J. Am. Chem. Soc. 2007, 129, 2440-1.

95. Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin nanotubes by ionic self-assembly. J. Am. Chem. Soc. 2004, 126, 15954-5.

96. Lee, J. S. M.; Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 2020, 120, 2171-214.

97. Liu, L.; Kochman, M. A.; Xu, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Acetylene-linked conjugated polymers for sacrificial photocatalytic hydrogen evolution from water. J. Mater. Chem. A2021, 9, 17242-8.

98. Geng, K.; He, T.; Liu, R.; et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120, 8814-933.

99. Gong, Y. N.; Guan, X.; Jiang, H. L. Covalent organic frameworks for photocatalysis: synthesis, structural features, fundamentals and performance. Coord. Chem. Rev. 2023, 475, 214889.

100. Huang, H.; Jiang, L.; Yang, J.; et al. Synthesis and modification of ultrathin g-C3N4 for photocatalytic energy and environmental applications. Renew. Sustain. Energy Rev. 2023, 173, 113110.

101. Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-76.

102.

103. Bertrandie, J.; Han, J.; De Castro, C. S. P.; et al. The energy level conundrum of organic semiconductors in solar cells. Adv. Mater. 2022, 34, 2202575.

104. Hughes, M. P.; Rosenthal, K. D.; Ran, N. A.; Seifrid, M.; Bazan, G. C.; Nguyen, T. Q. Determining the dielectric constants of organic photovoltaic materials using impedance spectroscopy. Adv. Funct. Mater. 2018, 28, 1801542.

105. Zhu, L.; Zhang, J.; Guo, Y.; Yang, C.; Yi, Y.; Wei, Z. Small exciton binding energies enabling direct charge photogeneration towards low-driving-force organic solar cells. Angew. Chem. Int. Ed. 2021, 60, 15348-53.

106. Liu, X.; Yan, Y.; Honarfar, A.; Yao, Y.; Zheng, K.; Liang, Z. Unveiling excitonic dynamics in high-efficiency nonfullerene organic solar cells to direct morphological optimization for suppressing charge recombination. Adv. Sci. 2019, 6, 1802103.

107. de Clercq, D. M.; Yang, J.; Hanif, M.; et al. Exciton dissociation, charge transfer, and exciton trapping at the MoS2/organic semiconductor interface. J. Phys. Chem. C2023, 127, 11260-7.

108. Sneyd, A. J.; Fukui, T.; Paleček, D.; et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 2021, 7, eabh4232.

109. Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004, 104, 4971-5004.

110. Ma, D.; Zhang, Z.; Zou, Y.; Chen, J.; Shi, J. W. The progress of g-C3N4 in photocatalytic H2 evolution: from fabrication to modification. Coord. Chem. Rev. 2024, 500, 215489.

111. Jiang, J.; Cao, S.; Hu, C.; Chen, C. A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chin. J. Catal. 2017, 38, 1981-9.

112. Zhang, J.; Zhang, M.; Sun, R. Q.; Wang, X. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 2012, 51, 10145-9.

113. Hou, Y.; Laursen, A. B.; Zhang, J.; et al. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem. Int. Ed. 2013, 52, 3621-5.

114. He, F.; Chen, G.; Zhou, Y.; Yu, Y.; Zheng, Y.; Hao, S. The facile synthesis of mesoporous g-C3N4 with highly enhanced photocatalytic H2 evolution performance. Chem. Commun. 2015, 51, 16244-6.

115. Wang, X.; Chen, L.; Chong, S. Y.; et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180-9.

116. Kosco, J.; Moruzzi, F.; Willner, B.; Mcculloch, I. Photocatalysts based on organic semiconductors with tunable energy levels for solar fuel applications. Adv. Energy Mater. 2020, 10, 2001935.

117. Kosco, J.; Sachs, M.; Godin, R.; et al. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.

118. Sachs, M.; Cha, H.; Kosco, J.; et al. Tracking charge transfer to residual metal clusters in conjugated polymers for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 14574-87.

119. Wang, Y.; Vogel, A.; Sachs, M.; et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy2019, 4, 746-60.

120. Luo, T.; Gilmanova, L.; Kaskel, S. Advances of MOFs and COFs for photocatalytic CO2 reduction, H2 evolution and organic redox transformations. Coord. Chem. Rev. 2023, 490, 215210.

121. Yeo, C. I.; Tan, Y. S.; Awan, H. T. A.; et al. A review on the advancements in covalent organic frameworks for photocatalytic reduction of carbon dioxide. Coord. Chem. Rev. 2024, 521, 216167.

122. Fu, Y.; Zhu, X.; Huang, L.; Zhang, X.; Zhang, F.; Zhu, W. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal. B: Environ. 2018, 239, 46-51.

123. Ai, L.; Li, W.; Wang, Q.; Cui, F.; Jiang, G. Harnessing keto-enol tautomerism to modulate β-ketoenamine-based covalent organic frameworks for visible-light-driven CO2 reduction. ChemCatChem 2022, 14, e202200935.

124. Yu, X.; Gong, K.; Tian, S.; Gao, G.; Xie, J.; Jin, X. H. A hydrophilic fully conjugated covalent organic framework for photocatalytic CO2 reduction to CO nearly 100% using pure water. J. Mater. Chem. A2023, 11, 5627-35.

125. Liu, W.; Li, X.; Wang, C.; et al. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431-40.

126. Zhang, Q.; Gao, S.; Guo, Y.; et al. Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nat. Commun. 2023, 14, 1147.

127. Wang, L.; Wang, L.; Yuan, S.; et al. Covalently-bonded single-site Ru-N2 knitted into covalent triazine frameworks for boosting photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2023, 322, 122097.

128. Peng, L.; Chang, S.; Liu, Z.; et al. Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catal. Sci. Technol. 2021, 11, 1717-24.

129. Ferree, M.; Kosco, J.; Alshehri, N.; et al. Organic semiconductor nanoparticles for visible-light-driven CO2 conversion. Sustain. Energy Fuels2024, 8, 2423-30.

130. Barman, S.; Singh, A.; Rahimi, F. A.; Maji, T. K. Metal-free catalysis: a redox-active donor-acceptor conjugated microporous polymer for selective visible-light-driven CO2 reduction to CH4. J. Am. Chem. Soc. 2021, 143, 16284-92.

131. Huang, Y.; Du, P.; Shi, W. X.; et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B: Environ. 2021, 288, 120001.

132. Tan, H.; Si, W.; Zhang, R.; et al. Dual active sites with charge-asymmetry in organic semiconductors promoting C-C coupling for highly efficient CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 2025, 64, e202416684.

133. Ciriminna, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Hydrogen peroxide: a key chemical for today’s sustainable development. ChemSusChem 2016, 9, 3374-81.

134. Li, W.; Han, B.; Liu, Y.; et al. Unsymmetric protonation driven highly efficient H2O2 photosynthesis in supramolecular photocatalysts via one-step two-electron oxygen reduction. Angew. Chem. Int. Ed. 2025, 64, e202421356.

135. Liu, L.; Gao, M. Y.; Yang, H.; Wang, X.; Li, X.; Cooper, A. I. Linear conjugated polymers for solar-driven hydrogen peroxide production: the importance of catalyst stability. J. Am. Chem. Soc. 2021, 143, 19287-93.

136. Sun, J.; Jena, H. S.; Krishnaraj, C.; et al. Pyrene-based covalent organic frameworks for photocatalytic hydrogen peroxide production. Angew. Chem. Int. Ed. 2023, 62, e202216719.

137. Wu, S.; Yu, H.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380-9.

138. Liu, P.; Liang, T.; Li, Y.; et al. Photocatalytic H2O2 production over boron-doped g-C3N4 containing coordinatively unsaturated FeOOH sites and CoOx clusters. Nat. Commun. 2024, 15, 9224.

139. Wu, W.; Li, Z.; Liu, S.; et al. Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e- oxygen reduction. Angew. Chem. Int. Ed. 2024, 63, e202404563.

140. Zhang, Y.; Pan, C.; Bian, G.; et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy2023, 8, 361-71.

141. Zhang, Y.; Pan, C.; Li, J.; Zhu, Y. Recent progress in nonsacrificial H2O2 generation using organic photocatalysts and in situ applications for environmental remediation. Acc. Mater. Res. 2024, 5, 76-88.

142. Wang, L.; Zhu, W. Organic donor-acceptor systems for photocatalysis. Adv. Sci. 2024, 11, 2307227.

143. Singh, J.; Ruda, H. E.; Narayan, M. R.; Ompong, D. Concept of Excitons. In Optical Properties of Materials and Their Applications, 2nd ed; John Wiley & Sons, 2019; pp 129-55.

144. Liu, E.; van Baren, J.; Lu, Z.; et al. Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2. Nat. Commun. 2021, 12, 6131.

145. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

146. Elward, J. M.; Chakraborty, A. Effect of dot size on exciton binding energy and electron-hole recombination probability in CdSe quantum dots. J. Chem. Theory Comput.2013, 9, 4351-9.

147. Dvorak, M.; Wei, S. H.; Wu, Z. Origin of the variation of exciton binding energy in semiconductors. Phys. Rev. Lett. 2013, 110, 016402.

148. Valencia, A. M.; Bischof, D.; Anhäuser, S.; et al. Excitons in organic materials: revisiting old concepts with new insights. Electron. Struct. 2023, 5, 033003.

149. Zhu, Y.; Zhao, F.; Wang, W.; Li, Y.; Zhang, S.; Lin, Y. Exciton binding energy of non-fullerene electron acceptors. Adv. Energy Sustain. Res.2022, 3, 2100184.

150. Lunt, R. R.; Benziger, J. B.; Forrest, S. R. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 2010, 22, 1233-6.

151. Zhu, Y.; Zhang, Z.; Si, W.; et al. Organic photovoltaic catalyst with extended exciton diffusion for high-performance solar hydrogen evolution. J. Am. Chem. Soc. 2022, 144, 12747-55.

152. Kraner, S.; Scholz, R.; Koerner, C.; Leo, K. Design proposals for organic materials exhibiting a low exciton binding energy. J. Phys. Chem. C2015, 119, 22820-5.

153. Shuai, Z.; Geng, H.; Xu, W.; Liao, Y.; André, J. M. From charge transport parameters to charge mobility in organic semiconductors through multiscale simulation. Chem. Soc. Rev. 2014, 43, 2662-79.

154. Abdalla, H.; Zuo, G.; Kemerink, M. Range and energetics of charge hopping in organic semiconductors. Phys. Rev. B2017, 96, 241202.

155. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J. L. Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-52.

156. Giannini, S.; Blumberger, J. Charge transport in organic semiconductors: the perspective from nonadiabatic molecular dynamics. Acc. Chem. Res. 2022, 55, 819-30.

157. Schön, J. H.; Kloc, C.; Batlogg, B. Fractional quantum hall effect in organic molecular semiconductors. Science 2000, 288, 2338-40.

158. Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. J. Mater. Chem. C2021, 9, 8099-128.

159. Li, H.; Li, H.; Dai, Q.; Li, H.; Brédas, J. L. Hydrolytic stability of boronate ester-linked covalent organic frameworks. Adv. Theory. Simul. 2018, 1, 1700015.

160. Chen, P.; Dong, X.; Huang, M.; et al. Rapid self-decomposition of g-C3N4 during gas-solid photocatalytic CO2 reduction and its effects on performance assessment. ACS Catal. 2022, 12, 4560-70.

161. Sugie, A.; Nakano, K.; Tajima, K.; Osaka, I.; Yoshida, H. Dependence of exciton binding energy on bandgap of organic semiconductors. J. Phys. Chem. Lett. 2023, 14, 11412-20.

162. Ma, H.; Wei, M.; Jin, F.; Chen, T.; Ma, Y. Two-dimensional COF with rather low exciton binding energies comparable to 3D inorganic semiconductors in the visible range for water splitting. J. Phys. Chem. C2019, 123, 24626-33.

163. Lan, Z. A.; Zhang, G.; Chen, X.; Zhang, Y.; Zhang, K. A. I.; Wang, X. Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions. Angew. Chem. Int. Ed. 2019, 58, 10236-40.

164. Dimitriev, O. P. Dynamics of excitons in conjugated molecules and organic semiconductor systems. Chem. Rev. 2022, 122, 8487-593.

165. Chen, Y.; Yan, C.; Dong, J.; et al. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099.

166. Yan, Y.; Yu, X.; Shao, C.; Hu, Y.; Huang, W.; Li, Y. Atomistic structural engineering of conjugated microporous polymers promotes photocatalytic biomass valorization. Adv. Funct. Mater. 2023, 33, 2304604.

167. Qin, N.; Mao, A.; Li, L.; et al. Construction of benzothiadiazole-based D-A covalent organic frameworks for photocatalytic reduction of Cr (VI) and synergistic elimination of organic pollutants. Polymer 2022, 262, 125483.

168. Flanders, N. C.; Kirschner, M. S.; Kim, P.; et al. Large exciton diffusion coefficients in two-dimensional covalent organic frameworks with different domain sizes revealed by ultrafast exciton dynamics. J. Am. Chem. Soc. 2020, 142, 14957-65.

169. Zhang, X.; Geng, K.; Jiang, D.; Scholes, G. D. Exciton diffusion and annihilation in an sp2 carbon-conjugated covalent organic framework. J. Am. Chem. Soc. 2022, 144, 16423-32.

170. Blätte, D.; Ortmann, F.; Bein, T. Photons, excitons, and electrons in covalent organic frameworks. J. Am. Chem. Soc. 2024, 146, 32161-205.

171. Dogru, M.; Handloser, M.; Auras, F.; et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 2013, 52, 2920-4.

172. Jakowetz, A. C.; Hinrichsen, T. F.; Ascherl, L.; et al. Excited-state dynamics in fully conjugated 2D covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 11565-71.

173. Pati, P. B.; Damas, G.; Tian, L.; et al. An experimental and theoretical study of an efficient polymer nano-photocatalyst for hydrogen evolution. Energy Environ. Sci.2017, 10, 1372-6.

174. Wang, G. B.; Xu, H. P.; Xie, K. H.; et al. A covalent organic framework constructed from a donor-acceptor-donor motif monomer for photocatalytic hydrogen evolution from water. J. Mater. Chem. A2023, 11, 4007-12.

175. Yang, J.; Jing, J.; Zhu, Y. A full-spectrum porphyrin-fullerene D-A supramolecular photocatalyst with giant built-in electric field for efficient hydrogen production. Adv. Mater. 2021, 33, 2101026.

176. Liu, W.; He, C.; Huang, S.; et al. Enhancing carrier transport via σ-linkage length modulation in D-σ-A semiconductors for photocatalytic oxidation. Angew. Chem. Int. Ed. 2023, 62, e202304773.

177. Zhang, Z.; Wang, J.; Liu, D.; et al. Highly efficient organic photocatalyst with full visible light spectrum through π-π stacking of TCNQ-PTCDI. ACS Appl. Mater. Interfaces2016, 8, 30225-31.

178. Guo, Y.; Zhou, Q.; Zhu, B.; Tang, C. Y.; Zhu, Y. Advances in organic semiconductors for photocatalytic hydrogen evolution reaction. EES Catal. 2023, 1, 333-52.

179. Kosco, J.; Bidwell, M.; Cha, H.; et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 2020, 19, 559-65.

180. Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The bulk heterojunction in organic photovoltaic, photodetector, and photocatalytic applications. Adv. Mater. 2020, 32, 2001763.

181. Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv. Mater. 2021, 33, 2100317.

182. Yang, Y.; Li, D.; Cai, J.; et al. Enhanced photocatalytic hydrogen evolution from organic ternary heterojunction nanoparticles featuring a compact alloy-like phase. Adv. Funct. Mater. 2023, 33, 2209643.

183. Zhang, Z.; Zhu, Y.; Chen, X.; Zhang, H.; Wang, J. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv. Mater. 2019, 31, 1806626.

184. Wu, X.; Han, X.; Liu, Y.; Liu, Y.; Cui, Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J. Am. Chem. Soc. 2018, 140, 16124-33.

185. Ma, Y.; Wang, Y.; Li, H.; et al. Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew. Chem. Int. Ed. 2020, 59, 19633-8.

186. Khalil, I. E.; Das, P.; Thomas, A. Two-dimensional covalent organic frameworks: structural insights across different length scales and their impact on photocatalytic efficiency. Acc. Chem. Res. 2024, 57, 3138-50.

187. Li, X.; Cai, S.; Sun, B.; Yang, C.; Zhang, J.; Liu, Y. Chemically robust covalent organic frameworks: progress and perspective. Matter 2020, 3, 1507-40.

188. Li, P.; Fang, J.; Wang, Y.; et al. Synergistic effect of dielectric property and energy transfer on charge separation in non-fullerene-based solar cells. Angew. Chem. Int. Ed. 2021, 60, 15054-62.

189. Li, Z.; He, T.; Gong, Y.; Jiang, D. Covalent organic frameworks: pore design and interface engineering. Acc. Chem. Res. 2020, 53, 1672-85.

190. He, T.; Zhao, Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202303086.

191. Nagai, A.; Guo, Z.; Feng, X.; et al. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2011, 2, 536.

192. Liu, R.; Chen, Y.; Yu, H.; et al. Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 2024, 7, 195-206.

193. Xu, H.; Chen, X.; Gao, J.; et al. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 2014, 50, 1292-4.

194. Kang, X.; Stephens, E. R.; Spector-Watts, B. M.; et al. Challenges and opportunities for chiral covalent organic frameworks. Chem. Sci. 2022, 13, 9811-32.

195. Han, X.; Yuan, C.; Hou, B.; et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 2020, 49, 6248-72.

196. Fang, Q.; Zhuang, Z.; Gu, S.; et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 2014, 5, 4503.

197. Liu, Y.; Zhou, Q.; Yu, H.; et al. Increasing the accessibility of internal catalytic sites in covalent organic frameworks by introducing a bicontinuous mesostructure. Angew. Chem. Int. Ed. 2024, 63, e202400985.

198. Spitler, E. L.; Koo, B. T.; Novotney, J. L.; et al. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 2011, 133, 19416-21.

199. Jin, S.; Ding, X.; Feng, X.; et al. Charge dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 2013, 52, 2017-21.

200. Banerjee, T.; Lotsch, B. V. The wetter the better. Nat. Chem. 2018, 10, 1175-7.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/