REFERENCES

1. Kreisel, J.; Alexe, M.; Thomas, P. A. A photoferroelectric material is more than the sum of its parts. Nat. Mater. 2012, 11, 260.

2. Aydin, E.; Ugur, E.; Yildirim, B. K.; et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 2023, 623, 732-8.

3. Lin, H.; Yang, M.; Ru, X.; et al. Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers. Nat. Energy. 2023, 8, 789-99.

4. Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009, 324, 63-6.

5. Fridkin, V. M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 2001, 46, 654-8.

6. Yang, S. Y.; Seidel, J.; Byrnes, S. J.; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143-7.

7. Xiao, Z.; Yuan, Y.; Shao, Y.; et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193-8.

8. Grinberg, I.; West, D. V.; Torres, M.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509-12.

9. Dalba, G.; Soldo, Y.; Rocca, F.; Fridkin, V. M.; Sainctavit, P. Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation. Phys. Rev. Lett. 1995, 74, 988-91.

10. Yan, Y.; Zhou, J. E.; Maurya, D.; Wang, Y. U.; Priya, S. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 2016, 7, 13089.

11. Tang, Y. L.; Zhu, Y. L.; Ma, X. L.; et al. Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547-51.

12. Liu, Y.; Ye, S.; Xie, H.; et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst. Adv. Mater. 2020, 32, e1906513.

13. Lin, C.; Zhang, Z.; Dai, Z.; et al. Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current. Nat. Commun. 2023, 14, 2341.

14. Liu, H.; Chen, J.; Ren, Y.; et al. Large photovoltage and controllable photovoltaic effect in PbTiO3-Bi(Ni2/3+xNb1/3-x)O3-δ ferroelectrics. Adv. Elect. Mater. 2015, 1, 1400051.

15. Pang, D.; Liu, X.; He, X.; Chen, C.; Zheng, J.; Yi, Z. Anomalous photovoltaic effect in Bi(Ni2/3Ta1/3)O3-PbTiO3 ferroelectric solid solutions. J. Am. Ceram. Soc. 2019, 102, 3448-56.

16. Bobić, J. D.; Katiliute, R. M.; Ivanov, M.; et al. Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics. J. Mater. Sci:. Mater. Electron. 2016, 27, 2448-54.

17. Wu, L.; Burger, A. M.; Bennett-jackson, A. L.; Spanier, J. E.; Davies, P. K. Polarization-modulated photovoltaic effect at the morphotropic phase boundary in ferroelectric ceramics. Adv. Elect. Materials. 2021, 7, 2100144.

18. Ke, X.; Wang, D.; Ren, X.; Wang, Y. Polarization spinodal at ferroelectric morphotropic phase boundary. Phys. Rev. Lett. 2020, 125, 127602.

19. Bennett, J. W.; Grinberg, I.; Rappe, A. M. New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: a theoretical study. J. Am. Chem. Soc. 2008, 130, 17409-12.

20. Gou, G. Y.; Bennett, J. W.; Takenaka, H.; Rappe, A. M. Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix )O3-x solid solutions: effects of cation arrangement on band gap. Phys. Rev. B. 2011, 83.

21. Wang, F.; Young, S. M.; Zheng, F.; Grinberg, I.; Rappe, A. M. Substantial bulk photovoltaic effect enhancement via nanolayering. Nat. Commun. 2016, 7, 10419.

22. Zheng, T.; Deng, H.; Zhou, W.; et al. Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping. Ceram. Int. 2016, 42, 6033-8.

23. Zhou, W.; Deng, H.; Yu, L.; Yang, P.; Chu, J. Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A = Pb, Ba; B = Ti) by ion substitution technique. Ceram. Int. 2015, 41, 13389-92.

24. Zhao, C.; Luo, B.; Guo, S.; Chen, C. Enhanced electrical and photocurrent characteristics of sol-gel derived Ni-doped PbTiO3 thin films. Ceram. Int. 2017, 43, 7861-5.

25. Li, X.; Wang, X.; Peng, L.; Zhang, K.; Wu, W.; Tang, Y. Ferroelectric thin film on a silicon-based pn junction: Coupling photovoltaic properties. Ferroelectrics 2016, 500, 250-8.

26. Joseph, J.; Vimala, T. M.; Sivasubramanian, V.; Murthy, V. R. K. Structural investigations on Pb(ZrxT1-x)O3 solid solutions using the X-ray Rietveld method. J. Mater. Sci. 2000, 35, 1571-5.

27. Ren, Z.; Wu, M.; Chen, X.; et al. Electrostatic force-driven oxide heteroepitaxy for interface control. Adv. Mater. 2018, 30, e1707017.

28. Luo, B. Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films. J. Appl. Phys. 2017, 122, 195104.

29. Zhang, Z.; Wu, P.; Lu, L.; Shu, C. Study on vacancy formation in ferroelectric PbTiO3 from ab initio. Appl. Phys. Lett. 2006, 88, 142902.

30. Ohtomo, A.; Muller, D. A.; Grazul, J. L.; Hwang, H. Y. Artificial charge-modulationin atomic-scale perovskite titanate superlattices. Nature 2002, 419, 378-80.

31. Torres-pardo, A.; Gloter, A.; Zubko, P.; et al. Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale. Phys. Rev. B. 2011, 84.

32. Ryu, J.; Han, G.; Song, T. K.; et al. Upshift of phase transition temperature in nanostructured PbTiO3 thick film for high temperature applications. ACS. Appl. Mater. Interfaces. 2014, 6, 11980-7.

33. Ren, Z.; Zhao, R.; Chen, X.; et al. Mesopores induced zero thermal expansion in single-crystal ferroelectrics. Nat. Commun. 2018, 9, 1638.

34. Mantese, J. V.; Schubring, N. W.; Micheli, A. L.; Catalan, A. B. Ferroelectric thin films with polarization gradients normal to the growth surface. Appl. Phys. Lett. 1995, 67, 721-3.

35. Zhang, J.; Xu, R.; Damodaran, A. R.; Chen, Z.; Martin, L. W. Understanding order in compositionally graded ferroelectrics: flexoelectricity, gradient, and depolarization field effects. Phys. Rev. B. 2014, 89.

36. Marvan, M.; Chvosta, P.; Fousek, J. Theory of compositionally graded ferroelectrics and pyroelectricity. Appl. Phys. Lett. 2005, 86, 221922.

37. Li, H.; Zhang, H.; Wang, Y.; Tang, Y.; Zhu, Y.; Ma, X. Misfit strain-misfit strain phase diagram of (110)-oriented ferroelectric PbTiO3 films: a phase-field study. Microstructures 2024, 4, 2024004.

38. Zhang, L.; Chen, J.; Fan, L.; et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 2018, 361, 494-7.

39. Sturman, B. I. Ballistic and shift currents in the bulk photovoltaic effect theory. Phys. -Usp. 2020, 63, 407-11.

40. Li, Y.; Fu, J.; Mao, X.; et al. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun. 2021, 12, 5896.

41. Nakashima, S.; Takayama, K.; Shigematsu, K.; Fujisawa, H.; Shimizu, M. Growth of epitaxial Mn and Zn codoped BiFeO3 thin films and an enhancement of photovoltage generated by a bulk photovoltaic effect. Jpn. J. Appl. Phys. 2016, 55, 10TA07.

42. Ma, N.; Zhang, K.; Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 2017, 29.

43. Ma, N.; Yang, Y. Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405 nm light detection. Nano. Energy. 2019, 60, 95-102.

44. Lei, Y.; Hao, W.; Wang, S.; et al. Bulk photovoltaic effect of a hybrid ferroelectric semiconductor. Phys. Rev. B. 2024, 109.

45. Han, S.; Li, M.; Liu, Y.; et al. Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection. Nat. Commun. 2021, 12, 284.

46. Ma, Y.; Wang, J.; Liu, Y.; et al. High performance self-powered photodetection with a low detection limit based on a two-dimensional organometallic perovskite ferroelectric. J. Mater. Chem. C. 2021, 9, 881-7.

47. Zhang, X.; Ji, C.; Liu, X.; et al. Solution-grown large-sized single-crystalline 2d/3d perovskite heterostructure for self-powered photodetection. Adv. Optic. Mater. 2020, 8, 2000311.

48. Ji, C.; Dey, D.; Peng, Y.; Liu, X.; Li, L.; Luo, J. Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite. Angew. Chem. Int. Ed. Engl. 2020, 59, 18933-7.

49. Liu, X.; Wang, S.; Long, P.; et al. Polarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectric. Angew. Chem. Int. Ed. Engl. 2019, 58, 14504-8.

50. Ding, J.; Fang, H.; Lian, Z.; et al. A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes. CrystEngComm 2016, 18, 4405-11.

51. Fan, Z.; Ji, W.; Li, T.; et al. Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films. Acta. Materialia. 2015, 88, 83-90.

52. Gupta, S.; Tomar, M.; Gupta, V. Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film. J. Appl. Phys. 2014, 115, 014102.

53. Sharma, S.; Tomar, M.; Gupta, V. Effect of top metal contact on the ferroelectric photovoltaic response of BFO thin film capacitors. Vacuum 2018, 158, 117-20.

54. Ji, W.; Yao, K.; Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 2010, 22, 1763-6.

55. Xu, J.; Cao, D.; Fang, L.; Zheng, F.; Shen, M.; Wu, X. Space charge effect on the photocurrent of Pt-sandwiched Pb(Zr0.20Ti0.80)O3 film capacitors. J. Appl. Phys. 2009, 106, 113705.

56. Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; et al. Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 2009, 95, 062909.

57. Yarmarkin, V. K.; Gol’tsman, B. M.; Kazanin, M. M.; Lemanov, V. V. Barrier photovoltaic effects in PZT ferroelectric thin films. Phys. Solid. State. 2000, 42, 522-7.

58. Shimada, T.; Ueda, T.; Wang, J.; Kitamura, T. Hybrid Hartree-Fock density functional study of charged point defects in ferroelectric PbTiO3. Phys. Rev. B. 2013, 87.

59. Lin, H.; Ou, J.; Fan, Z.; et al. In situ training of an in-sensor artificial neural network based on ferroelectric photosensors. Nat. Commun. 2025, 16, 421.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/