REFERENCES
1. Tang, Y. L.; Zhu, Y. L.; Ma, X. L.; et al. Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547-51.
2. Nelson, C. T.; Gao, P.; Jokisaari, J. R.; et al. Domain dynamics during ferroelectric switching. Science 2011, 334, 968-71.
3. Wang, L.; Qi, H.; Deng, S.; et al. Design of superior electrostriction in BaTiO3-based lead-free relaxors via the formation of polarization nanoclusters. InfoMat 2023, 5, e12362.
4. Dawber, M.; Rabe, K. M.; Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 2005, 77, 1083-130.
6. Wu, L.; Ji, Y.; Dan, H.; Bowen, C. R.; Yang, Y. A multifunctional optical-thermal logic gate sensor array based on ferroelectric BiFeO3 thin films. InfoMat 2023, 5, e12414.
7. Chisholm, M. F.; Luo, W.; Oxley, M. P.; Pantelides, S. T.; Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 2010, 105, 197602.
8. Zhang, S.; Zhu, Y.; Tang, Y.; et al. Giant polarization sustainability in ultrathin ferroelectric films stabilized by charge transfer. Adv. Mater. 2017, 29, 1703543.
9. Böscke, T. S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903.
10. Cheema, S. S.; Kwon, D.; Shanker, N.; et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 2020, 580, 478-82.
11. Lee, H. J.; Lee, M.; Lee, K.; et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2. Science 2020, 369, 1343-7.
12. Kim, S. B.; Ahn, Y. H.; Park, J.; Lee, S. W. Enhanced nucleation and growth of HfO2 thin films grown by atomic layer deposition on graphene. J. Alloys. Compd. 2018, 742, 676-82.
13. Chen, W.; Han, Q.; He, J.; He, W.; Wang, W.; Guo, H. Effect of HfO2 framework on steam oxidation behavior of HfO2 doped Si coating at high temperatures. Ceram. Int. 2022, 48, 20201-10.
14. Peng, Y.; Wang, Z.; Xiao, W.; et al. Effect of thickness scaling on the switching dynamics of ferroelectric HfO2-ZrO2 capacitors. Ceram. Int. 2022, 48, 28489-95.
15. Luo, Q.; Cheng, Y.; Yang, J.; et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391.
16. Müller, J.; Böscke, T. S.; Schröder, U.; et al. Ferroelectricity in simple binary ZrO2 and HfO2. Nano. Lett. 2012, 12, 4318-23.
17. Batra, R.; Huan, T. D.; Jones, J. L.; Rossetti, G.; Ramprasad, R. Factors favoring ferroelectricity in hafnia: a first-principles computational study. J. Phys. Chem. C. 2017, 121, 4139-45.
18. Xu, X.; Huang, F. T.; Qi, Y.; et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat. Mater. 2021, 20, 826-32.
19. Sang, X.; Grimley, E. D.; Schenk, T.; Schroeder, U.; Lebeau, J. M. On the structural origins of ferroelectricity in HfO2 thin films. Appl. Phys. Lett. 2015, 106, 162905.
20. Lebeau, J. M.; D’alfonso, A. J.; Wright, N. J.; Allen, L. J.; Stemmer, S. Determining ferroelectric polarity at the nanoscale. Appl. Phys. Lett. 2011, 98, 052904.
21. Schroeder, U.; Yurchuk, E.; Müller, J.; et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 2014, 53, 08LE02.
22. Schroeder, U.; Materano, M.; Mittmann, T.; Lomenzo, P. D.; Mikolajick, T.; Toriumi, A. Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconium. Jpn. J. Appl. Phys. 2019, 58, SL0801.
23. Kim, H. J.; Park, M. H.; Kim, Y. J.; et al. Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer. Appl. Phys. Lett. 2014, 105, 192903.
24. Lee, A. J.; Kim, B. S.; Hwang, J. H.; et al. Controlling the crystallinity of HfO2 thin film using the surface energy-driven phase stabilization and template effect. Appl. Surf. Sci. 2022, 590, 153082.
25. Shimizu, T.; Mimura, T.; Kiguchi, T.; et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl. Phys. Lett. 2018, 113, 212901.
26. Zheng, Y.; Xin, T.; Yang, J.; et al. In-situ atomic-level observation of reversible first-order transition in Hf0.5Zr0.5O2 ferroelectric film. In: 2022 International Electron Devices Meeting (IEDM); 2022 Dec 3-7; San Francisco, CA, USA. New York: IEEE; 2022. pp 6.3.1-6.3.4.
27. Zheng, Y.; Zhang, Y.; Xin, T.; et al. Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films. Mater. Today. Nano. 2023, 24, 100406.
29. Li, X.; Liu, Z.; Gao, A.; et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Nat. Mater. 2024, 23, 1077-84.
30. Pešić, M.; Fengler, F. P. G.; Larcher, L.; et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Materials. 2016, 26, 4601-12.
31. Kim, H. J.; Park, M. H.; Kim, Y. J.; et al. A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 2016, 8, 1383-9.
32. Cheng, Y.; Gao, Z.; Ye, K. H.; et al. Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film. Nat. Commun. 2022, 13, 645.
33. Grimley, E. D.; Schenk, T.; Mikolajick, T.; Schroeder, U.; Lebeau, J. M. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Materials. Inter. 2018, 5, 1701258.
34. Shi, S.; Xi, H.; Cao, T.; et al. Interface-engineered ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films. Nat. Commun. 2023, 14, 1780.
35. Zhang, S.; Zhu, M.; Suriyaprakash, J.; et al. Flux-closure domains in PbTiO3/SrTiO3 multilayers mediated without tensile strain. J. Phys. Chem. C. 2022, 126, 4630-7.







