REFERENCES
1. Zhuo, Z.; Ni, M.; Yu, N.; et al. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes. Nat. Commun. 2024, 15, 7990.
2. Fu, M.; Chen, Y.; Jin, W.; et al. A donor-acceptor (D-A) conjugated polymer for fast storage of anions. Angew. Chem. Int. Ed. 2024, 63, e202317393.
3. Yin, J.; Li, J.; Chen, H.; et al. Programmable zigzag π-extension toward graphene-like molecules by the stacking of naphthalene blocks. Nat. Synth. 2023, 2, 838-47.
4. Kong, J.; Song, S.; Yoo, M.; et al. Long-term stable polymer solar cells with significantly reduced burn-in loss. Nat. Commun. 2014, 5, 5688.
5. Xiao, M.; Ren, X.; Ji, K.; et al. Achieving ideal transistor characteristics in conjugated polymer semiconductors. Sci. Adv. 2023, 9, eadg8659.
6. Wu, X.; Wang, S.; Huang, W.; Dong, Y.; Wang, Z.; Huang, W. Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning. Nat. Commun. 2023, 14, 468.
7. Wu, J.; Liu, J.; Rao, L.; et al. A covalent organic polymer containing dative B ← N bonds: synthesis, single crystal structure, and physical properties. Inorg. Chem. Front. 2024, 11, 8285-9.
8. Shi, Y.; Li, J.; Sun, H.; et al. Thiazole imide-based all-acceptor homopolymer with branched ethylene glycol side chains for organic thermoelectrics. Angew. Chem. Int. Ed. 2022, 61, e202214192.
9. Wu, J.; Zhang, S.; Gu, Q.; Zhang, Q. Recent progress in covalent organic frameworks for flexible electronic devices. FlexMat 2024, 1, 160-72.
10. Cheng, L.; Ma, T.; Zhang, B.; et al. Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction. ACS. Catal. 2022, 12, 11639-50.
11. Milstein, D.; Stille, J. K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. J. Am. Chem. Soc. 1978, 100, 3636-8.
12. Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron. Lett. 1979, 20, 3437-40.
13. King, A. O.; Okukado, N.; Negishi, E. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun. 1977, 19, 683-4.
14. Ullmann, F.; Bielecki, J. Ueber synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges. 1901, 34, 2174-85.
15. Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (Hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225-74.
16. Abdulkarim, A.; Hinkel, F.; Jänsch, D.; Freudenberg, J.; Golling, F. E.; Müllen, K. A new solution to an old problem: synthesis of unsubstituted poly(para-phenylene). J. Am. Chem. Soc. 2016, 138, 16208-11.
18. Wang, X.; Wu, J.; Liu, H.; Kang, F.; Yan, F.; Zhang, Q. Cathodic polymerization through electrochemical dehalogenation. Macromolecules 2023, 56, 10198-205.
19. Wang, X.; Zhang, L.; Wu, J.; et al. Constructing N-containing poly(p-Phenylene) (PPP) films through a cathodic-dehalogenation polymerization method. Small. Methods. 2024, 8, e2400185.
20. Zeng, C.; Zheng, W.; Xu, H.; et al. Electrochemical deposition of a single-crystalline nanorod polycyclic aromatic hydrocarbon film with efficient charge and exciton transport. Angew. Chem. Int. Ed. 2022, 61, e202115389.
21. Zeng, C.; Wang, B.; Zhang, H.; et al. Electrochemical synthesis, deposition, and doping of polycyclic aromatic hydrocarbon films. J. Am. Chem. Soc. 2021, 143, 2682-7.
22. Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 2007, 52, 1-61.
23. Shi, G.; Jin, S.; Xue, G.; Li, C. A conducting polymer film stronger than aluminum. Science 1995, 267, 994-6.
24. Ambade, R. B.; Ambade, S. B.; Shrestha, N. K.; et al. Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J. Mater. Chem. A. 2017, 5, 172-80.
25. Li, G.; Zhao, Z.; Zhang, S.; et al. A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 2023, 14, 6526.
26. Han, M.; Chen, D.; Lu, Q.; Fang, G. Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives. Small 2024, 20, e2310293.
27. Sui, B. B.; Sha, L.; Wang, P. F.; et al. Salt solution etching to construct micro-gullies on the surface of Zn anodes enhances anodes performance in aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2024, 653, 159-69.
28. Zhao, L.; Zhao, S.; Zhang, N.; et al. Construction of stable Zn metal anode by inorganic functional protective layer toward long-life aqueous Zn-ion battery. Energy. Storage. Mater. 2024, 71, 103628.
29. Gao, J.; Xie, Y.; Zeng, P.; Zhang, L. Strategies for optimizing the Zn anode/electrolyte interfaces toward stable Zn-based batteries. Small. Methods. 2023, 7, e2300855.
30. Chen, P.; Yuan, X.; Xia, Y.; et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, e2100309.
31. Zhang, Z.; Xi, B.; Ma, X.; Chen, W.; Feng, J.; Xiong, S. Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries. SusMat 2022, 2, 114-41.
32. Liu, Z.; Li, G.; Xi, M.; et al. Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 2024, 63, e202319091.
33. Wang, Y.; Li, G.; Wang, X.; et al. Recent advances of organic polymers for zinc-ion batteries. Sustain. Energy. Fuels. 2022, 6, 5439-58.
34. Li, J.; He, B.; Zhang, Y.; et al. In situ constructing coordination compounds interphase to stabilize Zn metal anode for high-performance aqueous Zn-SeS2 batteries. Small 2022, 18, e2200567.
35. Ye, P.; Li, X.; He, K.; et al. A semi-interpenetrating network polymer coating for dendrite-free Zn anodes. J. Power. Sources. 2023, 558, 232622.
36. Zheng, J.; Liu, X.; Zheng, Y.; et al. AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes. Nano. Lett. 2023, 23, 6156-63.
37. Ma, G.; Chen, K.; Qiao, H.; Liu, J.; Dong, H.; Gao, Y. Porous V2CTx MXene as a High stability zinc anode protective coating. Nano. Lett. 2024, 24, 14552-8.
38. Li, G.; Wang, X.; Lv, S.; et al. In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 2023, 33, 2208288.
39. Xia, S.; Luo, Q.; Liu, J.; et al. In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes. Small 2024, 20, e2310497.
40. Fu, H.; Wen, Q.; Li, P.; et al. In-situ chemical conversion film for stabilizing zinc metal anodes. J. Energy. Chem. 2022, 73, 387-93.
41. Liu, H.; Li, Z.; Sui, B.; et al. Calcium alginate hydrogel coating comprehensively optimizes Zn deposition behavior of aqueous zinc-ion batteries anode. Ind. Eng. Chem. Res. 2024, 63, 13611-22.
42. Li, Q.; Yan, B.; Wang, D.; et al. Mechanistic study of interfacial modification for stable Zn anode based on a thin separator. Small 2022, 18, e2201045.
43. Naren, T.; Kuang, G. C.; Jiang, R.; et al. Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries. Angew. Chem. Int. Ed. 2023, 62, e202305287.
44. Zhu, Q.; Han, C. C. Synthesis and crystallization behaviors of highly fluorinated aromatic polyesters. Polymer 2007, 48, 3624-31.
45. Krishnakumar, V.; Mathammal, R. A joint FTIR, FT-Raman and scaled quantum mechanical study of 1,3-dibromo-2,4,5,6-tetra-fluoro benzene (DTB) and 1,2,3,4,5-pentafluoro benzene (PB). J. Raman. Spectrosc. 2009, 40, 1104-9.
46. Zang, L.; Ren, Y.; He, M.; Chen, B.; Hu, B. Fluorine-functionalized covalent-organic-framework-coated stir bar for the extraction of benzoylurea insecticides in pear juice and beverage followed by high-performance liquid chromatography-ultraviolet detection. J. Agric. Food. Chem. 2022, 70, 12689-99.
47. Huang, P.; Xiong, T.; Zhou, S.; et al. Advanced Tri-layer carbon matrices with π-π stacking interaction for binder-free lithium-ion storage. ACS. Appl. Mater. Interfaces. 2021, 13, 16516-27.
48. Li, W.; Wang, J.; Jia, C.; Chen, J.; Wen, Z.; Huang, A. Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts. J. Colloid. Interface. Sci. 2023, 650, 275-83.