REFERENCES

1. Auciello, O.; Scott, J. F.; Ramesh, R. The physics of ferroelectric memories. Phys. Today. 1998, 51, 22-7.

2. Setter, N.; Damjanovic, D.; Eng, L.; et al. Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606.

3. Arimoto, Y.; Ishiwara, H. Current status of ferroelectric random-access memory. MRS. Bull. 2004, 29, 823-8.

4. Sebastian, A.; Le, G. M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529-44.

5. Kent, A. D.; Worledge, D. C. A new spin on magnetic memories. Nat. Nanotechnol. 2015, 10, 187-91.

6. Cao, Q.; Lü, W.; Wang, X. R.; et al. Nonvolatile multistates memories for high-density data storage. ACS. Appl. Mater. Interfaces. 2020, 12, 42449-71.

7. Wu, S.; Zhang, X.; Cao, R.; et al. Multi-state nonvolatile capacitances in HfO2-based ferroelectric capacitor for neuromorphic computing. Appl. Phys. Lett. 2024, 124, 102902.

8. Lee, D.; Jeon, B. C.; Baek, S. H.; et al. Active control of ferroelectric switching using defect-dipole engineering. Adv. Mater. 2012, 24, 6490-5.

9. Lee, D.; Yang, S. M.; Kim, T. H.; et al. Multilevel data storage memory using deterministic polarization control. Adv. Mater. 2012, 24, 402-6.

10. Vasudevan, R. K.; Matsumoto, Y.; Cheng, X.; et al. Deterministic arbitrary switching of polarization in a ferroelectric thin film. Nat. Commun. 2014, 5, 4971.

11. Xu, R.; Liu, S.; Saremi, S.; et al. Kinetic control of tunable multi-state switching in ferroelectric thin films. Nat. Commun. 2019, 10, 1282.

12. Wang, G.; Hu, T.; Zhu, W.; et al. Multiple local symmetries result in a common average polar axis in high-strain BiFeO3-based ceramics. Phys. Rev. Lett. 2023, 130, 076801.

13. Saremi, S.; Xu, R.; Allen, F. I.; et al. Local control of defects and switching properties in ferroelectric thin films. Phys. Rev. Mater. 2018, 2.

14. Kavle, P.; Ross, A. M.; Zorn, J. A.; et al. Exchange-interaction-like behavior in ferroelectric bilayers. Adv. Mater. 2023, 35, e2301934.

15. Li, T.; Wu, Y.; Yu, G.; et al. Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6. Nat. Commun. 2024, 15, 2653.

16. Lee, J. H.; Chu, K.; Kim, K.; Seidel, J.; Yang, C. Out-of-plane three-stable-state ferroelectric switching: finding the missing middle states. Phys. Rev. B. 2016, 93.

17. Liu, L.; Cai, Y.; Chen, X.; Liu, Z.; Yuan, G.; Wang, Y. Flexible multi-state nonvolatile antiferroelectric memory. J. Am. Ceram. Soc. 2022, 105, 6232-40.

18. Noheda, B.; Cox, D. E.; Shirane, G.; Gonzalo, J. A.; Cross, L. E.; Park, S. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl. Phys. Lett. 1999, 74, 2059-61.

19. Noheda, B.; Cox, D. E.; Shirane, G.; Guo, R.; Jones, B.; Cross, L. E. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B. 2000, 63.

20. Wang, J.; Neaton, J. B.; Zheng, H.; et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719-22.

21. Eerenstein, W.; Mathur, N. D.; Scott, J. F. Multiferroic and magnetoelectric materials. Nature 2006, 442, 759-65.

22. Catalan, G.; Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463-85.

23. Zeches, R. J.; Rossell, M. D.; Zhang, J. X.; et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 2009, 326, 977-80.

24. Christen, H. M.; Nam, J. H.; Kim, H. S.; Hatt, A. J.; Spaldin, N. A. Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films. Phys. Rev. B. 2011, 83.

25. Rossell, M. D.; Erni, R.; Prange, M. P.; et al. Atomic structure of highly strained BiFeO3 thin films. Phys. Rev. Lett. 2012, 108, 047601.

26. You, L.; Chen, Z.; Zou, X.; et al. Characterization and manipulation of mixed phase nanodomains in highly strained BiFeO3 thin films. ACS. Nano. 2012, 6, 5388-94.

27. Xue, F.; Li, Y.; Gu, Y.; Zhang, J.; Chen, L. Strain phase separation: formation of ferroelastic domain structures. Phys. Rev. B. 2016, 94.

28. Macmanus-driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 2010, 20, 2035-45.

29. Zhao, R.; Yang, C.; Wang, H.; et al. Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling. Nat. Commun. 2022, 13, 2364.

30. MacManus-Driscoll, J. L.; Wu, R.; Li, W. Interface-related phenomena in epitaxial complex oxide ferroics across different thin film platforms: opportunities and challenges. Mater. Horiz. 2023, 10, 1060-86.

31. Zhang, L.; Chen, J.; Fan, L.; et al. Giant polarization in super-tetragonal thin films through interphase strain. Science 2018, 361, 494-7.

32. Chen, L. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 2002, 32, 113-40.

33. Chen, L.; Shen, J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 1998, 108, 147-58.

34. Li, Y.; Hu, S.; Liu, Z.; Chen, L. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta. Materialia. 2002, 50, 395-411.

35. Li, Y. L.; Chen, L. Q.; Asayama, G.; Schlom, D. G.; Zurbuchen, M. A.; Streiffer, S. K. Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations. J. Appl. Phys. 2004, 95, 6332-40.

36. Li, Y. L.; Hu, S. Y.; Liu, Z. K.; Chen, L. Q. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl. Phys. Lett. 2002, 81, 427-9.

37. Choudhury, S.; Zhang, J. X.; Li, Y. L.; Chen, L. Q.; Jia, Q. X.; Kalinin, S. V. Effect of ferroelastic twin walls on local polarization switching: Phase-field modeling. Appl. Phys. Lett. 2008, 93, 162901.

38. Gao, P.; Britson, J.; Nelson, C. T.; et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nat. Commun. 2014, 5, 3801.

39. Chen, A.; Hu, J. M.; Lu, P.; et al. Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2016, 2, e1600245.

40. Wang, J.; Ma, X.; Li, Q.; Britson, J.; Chen, L. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta. Materialia. 2013, 61, 7591-603.

41. Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; et al. Observation of polar vortices in oxide superlattices. Nature 2016, 530, 198-201.

42. Zhou, S.; You, L.; Zhou, H.; Pu, Y.; Gui, Z.; Wang, J. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys. 2021, 16, 986.

43. Meng, P.; Wu, Y.; Bian, R.; et al. Sliding induced multiple polarization states in two-dimensional ferroelectrics. Nat. Commun. 2022, 13, 7696.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/