REFERENCES

1. Jo, W.; Dittmer, R.; Acosta, M.; et al. Giant electric-field-induced strains in lead-free ceramics for actuator applications - status and perspective. J. Electroceram. 2012, 29, 71-93.

2. Panda, P. K.; Sahoo, B. PZT to lead free piezo ceramics: a review. Ferroelectrics 2015, 474, 128-43.

3. Yang, L.; Kong, X.; Li, F.; et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72-108.

4. Zhang, L.; Jing, R.; Huang, Y.; et al. Ultra-weak polarization-strain coupling effect boosts capacitive energy storage. Adv. Mater. 2024, 36, e2406219.

5. Zhang, S. High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides. Microstructures 2023, 3, 2023003.

6. Hao, J.; Li, W.; Zhai, J.; Chen, H. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng. R. Rep. 2019, 135, 1-57.

7. Fan, P.; Liu, K.; Ma, W.; et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators. J. Materiomics. 2021, 7, 508-44.

8. Wei, Y.; Deng, Y.; Dong, S.; et al. Enhancement of piezoelectric performance in (Bi1/2Na1/2)TiO3-based system through single-crystallization. Chem. Eng. J. 2024, 496, 153996.

9. Li, F.; Wang, L.; Jin, L.; et al. Piezoelectric activity in Perovskite ferroelectric crystals. IEEE. Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 18-32.

10. Zeng, J.; Zhao, K.; Shi, X.; Ruan, X.; Zheng, L.; Li, G. Large strain induced by the alignment of defect dipoles in (Bi3+,Fe3+) co-doped Pb(Zr,Ti)O3 ceramics. Scripta. Mater. 2018, 142, 20-2.

11. Bian, L.; Qi, X.; Li, K.; et al. High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices. Adv. Funct. Mater. 2020, 30, 2001846.

12. Panda, P. K. Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 2009, 44, 5049-62.

13. Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552-624.

14. Wang, D.; Fan, Z.; Rao, G.; et al. Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano. Energy. 2020, 76, 104944.

15. Zhang, S.; Kounga, A. B.; Aulbach, E.; Ehrenberg, H.; Rödel, J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 2007, 91, 112906.

16. Viola, G.; Tian, Y.; Yu, C.; et al. Electric field-induced transformations in bismuth sodium titanate-based materials. Prog. Mater. Sci. 2021, 122, 100837.

17. Zhou, X.; Xue, G.; Luo, H.; Bowen, C. R.; Zhang, D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog. Mater. Sci. 2021, 122, 100836.

18. Wu, X.; Wu, C.; Yang, D.; Yin, J.; Wu, J. Strain regulation via composition and valence dependent substitution in BNT-based solid solutions. Adv. Powder. Mater. 2023, 2, 100079.

19. Lai, L.; Li, B.; Tian, S.; Zhao, Z.; Zhang, S.; Dai, Y. Giant electrostrain in lead-free textured piezoceramics by defect dipole design. Adv. Mater. 2023, 35, e2300519.

20. Li, T.; Liu, C.; Shi, P.; et al. High-performance strain of lead-free relaxor-ferroelectric piezoceramics by the morphotropic phase boundary modification. Adv. Funct. Mater. 2022, 32, 2202307.

21. Jing, R.; Zhang, L.; Hu, Q.; et al. Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1-x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions. J. Materiomics. 2022, 8, 335-46.

22. Wang, Z.; Zhao, J.; Zhang, N.; et al. Optimizing strain response in lead-free (Bi0.5Na0.5)TiO3-BaTiO3-NaNbO3 solid solutions via ferroelectric/(non-)ergodic relaxor phase boundary engineering. J. Materiomics. 2023, 9, 244-55.

23. Malik, R. A.; Hussain, A.; Maqbool, A.; et al. Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications. J. Am. Ceram. Soc. 2015, 98, 3842-8.

24. Zhang, X.; Jiang, G.; Liu, D.; Yang, B.; Cao, W. Enhanced electric field induced strain in (1-x)((Bi0.5Na0.5)TiO3-Ba(Ti,Zr)O3)-xSrTiO3 ceramics. Ceram. Int. 2018, 44, 12869-76.

25. Bai, W.; Li, L.; Li, W.; Shen, B.; Zhai, J.; Chen, H. Effect of SrTiO3 template on electric properties of textured BNT-BKT ceramics prepared by templated grain growth process. J. Alloys. Compd. 2014, 603, 149-57.

26. Wang, F.; Xu, M.; Tang, Y.; et al. Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions. J. Am. Ceram. Soc. 2012, 95, 1955-9.

27. Lalitha, K. V.; Koruza, J.; Rödel, J. Propensity for spontaneous relaxor-ferroelectric transition in quenched (Na1/2Bi1/2)TiO3-BaTiO3 compositions. Appl. Phys. Lett. 2018, 113, 252902.

28. Li, T.; Lou, X.; Ke, X.; et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta. Mater. 2017, 128, 337-44.

29. Fan, P.; Zhang, Y.; Xie, B.; et al. Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics. Ceram. Int. 2018, 44, 3211-7.

30. Wei, Q.; Zhu, M.; Zheng, M.; Hou, Y. Giant strain of 0.65% obtained in B-site complex cations (Zn1/3Nb2/3)4+-modified BNT-7BT ceramics. J. Alloys. Compd. 2019, 782, 611-8.

31. Ullah, A.; Ahn, C. W.; Hussain, A.; Lee, S. Y.; Lee, H. J.; Kim, I. W. Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na, K)0.5TiO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 2010, 10, 1174-81.

32. Janbua, J.; Niemchareon, S.; Muanghlua, R.; Vittayakorn, N. High strain response of the (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBaSnO3 lead free piezoelectric ceramics system. Ferroelectrics 2016, 490, 13-22.

33. Ge, R.; Zhao, Z.; Duan, S.; et al. Large electro-strain response of La3+ and Nb5+ co-doped ternary 0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3 lead-free piezoelectric ceramics. J. Alloys. Compd. 2017, 724, 1000-6.

34. Wang, C.; Lou, X. High energy storage properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by incorporating Sr0.8Bi0.1γ0.1Ti0.8Zr0.2O2.95. Microstructures 2023, 3, 2023023.

35. Rahman, J. U.; Hussain, A.; Maqbool, A.; et al. Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3-BaTiO3 ceramics. J. Alloys. Compd. 2014, 593, 97-102.

36. Cheng, R.; Xu, Z.; Chu, R.; Hao, J.; Du, J.; Li, G. Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics. J. Eur. Ceram. Soc. 2016, 36, 489-96.

37. Bafandeh, M. R.; Han, H.; Lee, J. Enhanced electric field induced strain in complex-ion Ga3+ and Ta5+-doped 0.93BNT-0.07BT piezoceramic. J. Electroceram. 2021, 47, 89-99.

38. Li, L.; Hao, J.; Xu, Z.; Li, W.; Chu, R.; Li, G. Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics. Ceram. Int. 2016, 42, 14886-93.

39. Hao, J.; Xu, Z.; Chu, R.; Li, W.; Fu, P.; Du, J. Field-induced large strain in lead-free (Bi0.5Na0.5)1-xBaxTi0.98(Fe0.5Ta0.5)0.02O3 piezoelectric ceramics. J. Alloys. Compd. 2016, 677, 96-104.

40. Schütz, D.; Deluca, M.; Krauss, W.; Feteira, A.; Jackson, T.; Reichmann, K. Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 2012, 22, 2285-94.

41. Soergel, E. Piezoresponse force microscopy (PFM). J. Phys. D. Appl. Phys. 2011, 44, 464003.

42. Jin, L.; Li, F.; Zhang, S.; Green, D. J. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 2014, 97, 1-27.

43. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 1976, 32, 751-67.

44. Jing, R.; Chen, X.; Lian, H.; Qiao, X.; Shao, X.; Zhou, J. Comparative study on structure, dielectric, and piezoelectric properties of (Na0.47Bi0.47Ba0.06)0.95A0.05TiO3 (A = Ca2+/Sr2+) ceramics: effect of radii of A-site cations. J. Eur. Ceram. Soc. 2018, 38, 3111-7.

45. Pasha, U. M.; Zheng, H.; Thakur, O. P.; et al. In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 2007, 91, 062908.

46. Zhang, Y.; Zeng, K.; Fu, J.; Xie, A.; Fu, Z.; Zuo, R. Giant strains of 0.70% achieved via a field-induced multiple phase transition in BNT-based relaxor antiferroelectric ceramics. J. Eur. Ceram. Soc. 2023, 43, 4748-56.

47. Kreisel, J.; Glazer, A. M.; Bouvier, P.; Lucazeau, G. High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite. Phys. Rev. B. 2001, 63, 174106.

48. Kreisel, J.; Glazer, A. M.; Jones, G.; Thomas, P. A.; Abello, L.; Lucazeau, G. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 ≤x ≤1) solid solution. J. Phys. Condens. Matter. 2000, 12, 3267.

49. Bokov, A. A.; Ye, Z. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 2006, 41, 31-52.

50. Zhao, P.; Wang, H.; Wu, L.; et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy. Mater. 2019, 9, 1803048.

51. Li, G.; Ge, G.; Lin, J.; et al. Eco-friendly cooling materials with synergistic behavior of electromechanical and electrocaloric effects based on constructing B-site defect field. Appl. Mater. Today. 2022, 26, 101332.

52. Jia, X.; Zhang, J.; Xing, H.; Wang, J.; Zheng, P.; Wen, F. Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics. J. Alloys. Compd. 2018, 741, 7-13.

53. Smolenskii, G. A. New ferroelectrics of complex composition. IV. SciSpace 1961. Available from: https://scispace.com/papers/new-ferroelectrics-of-complex-composition-iv-2wd1zsevvv [Last accessed on 7 Apr 2025]

54. Shi, J.; Zhao, Y.; He, J.; et al. Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics. ACS. Appl. Energy. Mater. 2022, 5, 3436-46.

55. Yin, J.; Zhao, C.; Zhang, Y.; Wu, J. Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta. Mater. 2018, 147, 70-7.

56. Dong, G.; Fan, H.; Liu, L.; Ren, P.; Cheng, Z.; Zhang, S. Large electrostrain in Bi1/2Na1/2TiO3-based relaxor ferroelectrics: a case study of Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Ni2/3Nb1/3)O3 ceramics. J. Materiomics. 2021, 7, 593-602.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/