REFERENCES
1. Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. (1980-2015). 2014, 56, 862-71.
2. Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22-34.
3. Xie, Y.; Liu, S.; Guo, X.; He, X.; Liang, C.; Deng, Y. Modulation of precipitation behavior by dislocations and alloying for superior strength-ductility balance in Al-Cu-Li alloys. J. Alloys. Compd. 2025, 1010, 177334.
4. Deng, S.; Liu, Z.; Zeng, G.; et al. The precipitation evolution and mechanical properties of an Al-Cu-Li-Mg alloy during natural aging. J. Mater. Sci. Technol. 2024, 192, 42-53.
5. Yang, X.; Wang, J.; Xue, C.; et al. Enhancing strength and ductility of Al-Cu-Li alloys by microalloying both Er and Zr to promote complete transformation from δ’ (Al3Li) to T1 (Al2CuLi) precipitates. J. Mater. Res. Technol. 2024, 32, 2913-30.
6. Wang, L.; Zhan, S.; Ruan, Y.; Miao, T.; Hu, L. Influence of grain size on twinning behavior of WE43 magnesium alloy during room-temperature compression deformation. J. Rare. Earths. 2024, 42, 2285-92.
7. Li, S.; Wang, Q.; Chen, J.; Wu, C. The effect of thermo-mechanical treatment on the formation of T1 phase and δ’/θ’/δ’ composite precipitate in an Al-Cu-Li-Mg alloy. Mater. Charact. 2021, 176, 111123.
8. Xu, X.; Wu, G.; Zhang, L.; et al. Effects of heat treatment and pre-stretching on the mechanical properties and microstructure evolution of extruded 2050 Al-Cu-Li alloy. Mater. Sci. Eng:. A. 2022, 845, 143236.
9. Lv, P.; Wang, R.; Peng, C.; Cai, Z. Improved strength and ductility of rapidly solidified 2195 alloy by pre-rolling combined with double aging and interrupted aging. Mater. Sci. Eng:. A. 2023, 873, 145023.
10. Xie, B.; Huang, L.; Xu, J.; et al. Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al-Li alloy. Mater. Sci. Eng:. A. 2022, 832, 142394.
11. Wang, X.; Shao, W.; Jiang, J.; Li, G.; Wang, X.; Zhen, L. Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al-Cu-Li-Mg-Ag alloy. Mater. Sci. Eng:. A. 2020, 782, 139253.
12. Zou, Y.; Cao, L.; Wu, X.; Tang, S.; Guo, M. Synergetic effect of natural ageing and pre-stretching on the ageing behavior in T’/η’ phase-strengthened Al-Zn-Mg-Cu alloys. J. Mater. Sci. Technol. 2023, 146, 240-51.
13. Rodgers, B.; Prangnell, P. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195. Acta. Materialia. 2016, 108, 55-67.
14. Huang, L.; He, L.; Li, S.; Liu, W.; Huang, J.; Chen, S. Effects of pre-stretch on microstructure, mechanical properties and corrosion resistance of 2A14 aluminum alloy. Trans. Nonferrous. Met. Soc. China. 2024, 34, 1065-80.
15. Dai, W.; Jiang, Y.; Yao, J.; Wang, Y.; Cao, F. Simultaneously improving the strength and ductility of an Ag-free 2195 Al-Li alloy by T8 treatment with cryogenic pre-rolling. J. Alloys. Compd. 2024, 976, 173214.
16. Dong, F.; Huang, S.; Yi, Y.; et al. Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al-Li alloy. Mater. Sci. Eng:. A. 2022, 834, 142585.
17. Xiao, Y.; Guo, A.; Cui, H.; Wang, Z.; Kong, C.; Yu, H. Microstructure evolution, mechanical response, and corrosion resistance for a 2195 Al-Li alloy under different rolling reductions during cryorolling. J. Alloys. Compd. 2024, 997, 174973.
18. Xu, J.; Huang, L.; Xu, Y.; et al. Effect of pulsed electromagnetic field treatment on dislocation evolution and subsequent artificial aging behavior of 2195 Al-Li alloy. Mater. Charact. 2022, 187, 111872.
19. Xie, B.; Huang, L.; Xu, J.; Wang, Y.; Li, J. Microstructure evolution and strengthening mechanism of Al-Li alloy during thermo-electromagnetic forming process. J. Mater. Process. Technol. 2023, 315, 117922.
20. Xu, X.; Wu, G.; Tong, X.; et al. Enhancing strength-ductility synergy in an extruded Al-Cu-Li-Mg-Ag alloy via homogeneous GP zones and dislocation configuration. Mater. . Des. 2024, 239, 112766.
21. Xu, X.; Wu, G.; Tong, X.; et al. Achieving superior strength-ductility balance by tailoring dislocation density and shearable GP zone of extruded Al-Cu-Li alloy. Int. J. Plast. 2024, 182, 104135.
22. Li, S.; Duan, S.; Ming, W.; Wu, C.; Chen, J. Genetic structural phase evolution from Li-containing S-like phase precipitates towards S-phase in AlCuLiMg alloys. Acta. Materialia. 2022, 233, 117997.
23. Xu, X.; Wu, G.; Zhang, L.; Tong, X. New insight into enhancing the comprehensive mechanical performance in non-stretched Al-Cu-Li-(Mg)-(Ag)-Mn-Zr alloys. Mater. Lett. 2024, 360, 135899.
24. Chen, K.; Wu, X.; Cao, Y.; et al. Enhanced strength and ductility in an Al–Cu–Li alloy via long-term ageing. Mater. Sci. Eng:. A. 2021, 811, 141092.
25. Chen, X.; Ma, X.; Xi, H.; Zhao, G.; Wang, Y.; Xu, X. Effects of heat treatment on the microstructure and mechanical properties of extruded 2196 Al-Cu-Li alloy. MaterDes 2020, 192, 108746.
26. Costa Teixeira J, Cram D, Bourgeois L, Bastow T, Hill A, Hutchinson C. On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates. Acta. Materialia. 2008, 56, 6109-22.
27. Yang, J.; Liu, C.; Ma, P.; Chen, L.; Zhan, L.; Yan, N. Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al-Cu alloy. Int. J. Plast. 2022, 158, 103413.
28. Chen, B.; Liu, G.; Wang, R.; et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys. Acta. Materialia. 2013, 61, 1676-90.
29. Cui, S.; Zhang, C.; Liu, M.; Chen, L.; Zhao, G. Precipitation behavior of an Al-Cu-Li-X alloy and competing relationships among precipitates at different aging temperatures. Mater. Sci. Eng:. A. 2021, 814, 141125.
30. Liu, C.; Zhou, Y.; Ma, P.; He, J.; Chen, L. Enhanced age-hardening response at elevated temperature by natural-ageing-modified precipitation in an Al-Cu-Li-Mg alloy. Mater. Charact. 2023, 199, 112791.
31. Allen, S. M. Foil thickness measurements from convergent-beam diffraction patterns. Philos. Mag. A. 1981, 43, 325-35.
32. Dorin, T.; Donnadieu, P.; Chaix, J. M.; Lefebvre, W.; Geuser, F.; Deschamps, A. Size distribution and volume fraction of T1 phase precipitates from TEM images: direct measurements and related correction. Micron 2015, 78, 19-27.
33. Wu, M.; Liu, W.; Xiao, D.; Huang, L. Influence of thermal exposure on the microstructure evolution and mechanical behaviors of an Al-Cu-Li alloy. Mater. Des. 2023, 227, 111767.
34. Tsivoulas, D.; Prangnell, P. The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al-Cu-Li AA2198 sheet. Acta. Materialia. 2014, 77, 1-16.
35. Guo, Y.; Li, J.; Lu, D.; et al. Characterization of Al3Zr precipitation via double-step homogenization and recrystallization behavior after subsequent deformation in 2195 Al-Li alloy. Mater. Charact. 2021, 182, 111549.
36. Ivanov, R.; Deschamps, A.; De, G. F. Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions. Acta. Materialia. 2018, 157, 186-95.
37. Li, Z.; Ren, W.; Chen, H.; Nie, J. θ’’’ precipitate phase, GP zone clusters and their origin in Al-Cu alloys. J. Alloys. Compd. 2023, 930, 167396.
38. Zhang, P.; Shi, K.; Bian, J.; et al. Solute cluster evolution during deformation and high strain hardening capability in naturally aged Al-Zn-Mg alloy. Acta. Materialia. 2021, 207, 116682.
39. Chen, Y.; Weyland, M.; Hutchinson, C. The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys. Acta. Materialia. 2013, 61, 5877-94.
40. Xu, X.; Wu, G.; Zhang, L.; et al. Regulation of precipitation behavior among T1, S’, and θ’ phases in Al-Cu-Li-(Mg-Ag) alloys by optimizing Ag/Mg ratios. Mater. Sci. Eng:. A. 2023, 876, 145158.
41. Dong, Y.; Ye, L.; Tang, J.; Liu, X.; Sun, Q. The effects of temperature on the creep-aging behavior and mechanical properties of AA2050-T34 alloy. Mater. Sci. Eng:. A. 2020, 796, 140010.
42. Sun, J.; Wu, G.; Zhang, L.; Zhang, X.; Liu, L.; Zhang, J. Microstructure characteristics of an ultra-high strength extruded Al-4.7Cu-1Li-0.5Mg-0.1Zr-1Zn alloy during heat treatment. J. Alloys. Compd. 2020, 813, 152216.
43. Ott, N.; Kairy, S. K.; Yan, Y.; Birbilis, N. Evolution of grain boundary precipitates in an Al-Cu-Li Alloy during aging. Metall. Mater. Trans. A. 2017, 48, 51-6.
44. Jiang, L.; Li, J. K.; Cheng, P. M.; et al. Microalloying ultrafine grained Al alloys with enhanced ductility. Sci. Rep. 2014, 4, 3605.
45. Lin, J.; Fu, P.; Wang, Y.; et al. Effect of La addition on microstructure, mechanical behavior, strengthening and toughening mechanisms of cast Mg-Gd-Zn alloy. Mater. Sci. Eng:. A. 2023, 866, 144688.
46. Bailey, J. E.; Hirsch, P. B. The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 1960, 5, 485-97.
47. Dorin, T.; Deschamps, A.; Geuser, F. D.; Sigli, C. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy. Acta. Materialia. 2014, 75, 134-46.
48. Huang, Y.; Chen, Z.; Zheng, Z. A conventional thermo-mechanical process of Al-Cu-Mg alloy for increasing ductility while maintaining high strength. Scripta. Materialia. 2011, 64, 382-5.
49. Chan, K. A fracture model for hydride-induced embrittlement. Acta. Metallurgica. et. Materialia. 1995, 43, 4325-35.
50. Ashby, M. F. The deformation of plastically non-homogeneous materials. Philos. Mag-J. Theor. Exp. Appl. Phys. 1970, 21, 399-424.
51. Zeng, G.; Li, H.; Deng, S.; et al. Detailed investigation on microstructure and strengthening contribution of Al-xCu-1.3Li-X alloy sheets. Mater. Charact. 2023, 205, 113278.
52. Deschamps, A.; Decreus, B.; De, G. F.; Dorin, T.; Weyland, M. The influence of precipitation on plastic deformation of Al-Cu-Li alloys. Acta. Materialia. 2013, 61, 4010-21.







