REFERENCES
1. Chow, C. Recent advances and future perspectives in optical wireless communication, free space optical communication and sensing for 6G. J. Lightwave. Technol. 2024, 42, 3972-80.
2. Khan, L.; Yaqoob, I.; Imran, M.; Han, Z.; Hong, C. 6G wireless systems: a vision, architectural elements, and future directions. IEEE. Access. 2020, 8, 147029-44.
3. Haas, H.; Yin, L.; Chen, C.; et al. Introduction to indoor networking concepts and challenges in LiFi. J. Opt. Commun. Netw. 2020, 12, A190.
4. Wei, Z.; Wang, Z.; Zhang, J.; Li, Q.; Zhang, J.; Fu, H. Evolution of optical wireless communication for B5G/6G. Prog. Quantum. Electron. 2022, 83, 100398.
5. Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: advances, challenges, and prospects. IEEE. Veh. Technol. Mag. 2020, 15, 93-102.
7. Yu, T.; Huang, W.; Lee, W.; Chow, C.; Chang, S.; Kuo, H. Visible light communication system technology review: devices, architectures, and applications. Crystals 2021, 11, 1098.
8. James, S.; Huang, Y.; Ahmed, T.; et al. Micro-LED as a promising candidate for high-speed visible light communication. Appl. Sci. 2020, 10, 7384.
9. Lu, T.; Lin, X.; Guo, W.; et al. High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication Opto Electron Sci 2022. p. 220020.
10. Cho, J.; Park, J. H.; Kim, J. K.; Schubert, E. White light-emitting diodes: History, progress, and future. Laser. Photonics. Rev. 2017, 11, 1600147.
11. Xiang, H.; Wang, R.; Chen, J.; Li, F.; Zeng, H. Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer. Light. Sci. Appl. 2021, 10, 206.
12. Yan, Z.; Liu, S.; Sun, Y.; et al. Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays. Next. Nanotechnology. 2024, 5, 100051.
13. Karpov, S. Carrier localization in InGaN by composition fluctuations: implication to the “green gap”. Photon. Res. 2017, 5, A7.
14. Anwar, A.; Sajjad, M.; Johar, M.; Hernández-gutiérrez, C.; Usman, M.; Łepkowski, S. Recent progress in micro-LED-based display technologies. Laser. Photonics. Rev. 2022, 16, 2100427.
15. Zhou, X.; Tian, P.; Sher, C.; et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum. Electron. 2020, 71, 100263.
16. Cho, J.; Schubert, E. F.; Kim, J. K. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser. Photonics. Rev. 2013, 7, 408-21.
17. Yang, X.; Lin, Y.; Wu, T.; et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities Opto Electron Adv 2022. p. 210123.
18. Xu, Y.; Chen, J.; Zhang, H.; et al. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG: Ce phosphors. J. Mater. Chem. C. 2020, 8, 247-52.
19. Manousiadis, P. P.; Yoshida, K.; Turnbull, G. A.; Samuel, I. D. W. Organic semiconductors for visible light communications. Philos. Trans. A. Math. Phys. Eng. Sci. 2020, 378, 20190186.
20. Zhao, S.; Mo, Q.; Wang, B.; Cai, W.; Li, R.; Zang, Z. Inorganic halide perovskites for lighting and visible light communication. Photon. Res. 2022, 10, 1039.
21. Huang, C. Y.; Li, H.; Wu, Y.; et al. Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nanomicro. Lett. 2022, 15, 16.
22. Chaudhary, B.; Kshetri, Y. K.; Kim, H. S.; Lee, S. W.; Kim, T. H. Current status on synthesis, properties and applications of CsPbX3 (X = Cl, Br, I) perovskite quantum dots/nanocrystals. Nanotechnology 2021, 32, 502007.
23. Protesescu, L.; Yakunin, S.; Bodnarchuk, M.; et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano. Lett. 2015, 15, 3692-6.
24. He, X.; Li, T.; Liang, Z.; et al. Enhanced cyan photoluminescence and stability of CsPbBr3 quantum dots via surface engineering for white light-emitting diodes. Adv. Opt. Mater. 2024, 12, 2302726.
25. Pathak, S.; Sakai, N.; Wisnivesky, R. R. F.; et al. Perovskite crystals for tunable white light emission. Chem. Mater. 2015, 27, 8066-75.
26. Ma, Z.; Li, X.; Zhang, C.; et al. CsPb(Br/I)3 perovskite nanocrystals for hybrid gan-based high-bandwidth white light-emitting diodes. ACS. Appl. Nano. Mater. 2021, 4, 8383-9.
27. Song, J.; Li, J.; Li, X.; Xu, L.; Dong, Y.; Zeng, H. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7.
28. Xu, X.; Zhou, J.; Shi, Z.; et al. Microwave-assisted in-situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications. Appl. Mater. Today. 2024, 40, 102418.
29. Dursun, I.; Shen, C.; Parida, M. R.; et al. Perovskite nanocrystals as a color converter for visible light communication. ACS. Photonics. 2016, 3, 1150-6.
30. Ali, A.; Tehseen, R.; Mithilesh, K.; et al. Blue-laser-diode-based high CRI lighting and high-speed visible light communication using narrowband green-/red-emitting composite phosphor film. Appl. Opt. 2020, 59, 5197-204.
31. Wang, Z.; Wei, Z.; Cai, Y.; et al. Encapsulation-enabled perovskite-PMMA films combining a micro-LED for high-speed white-light communication. ACS. Appl. Mater. Interfaces. 2021, 13, 54143-51.
32. Ali, A.; Qasem, Z.; Li, Y.; Li, Q.; Fu, H. All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting. Opt. Express. 2022, 30, 35112-24.
33. Xia, M.; Zhu, S.; Luo, J.; et al. Ultrastable perovskite nanocrystals in all-inorganic transparent matrix for high-speed underwater wireless optical communication. Adv. Opt. Mater. 2021, 9, 2002239.
34. Li, X.; Tong, Z.; Lyu, W.; et al. Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots. Opt. Express. 2022, 30, 1709-22.
35. Kang, C.; Dursun, I.; Liu, G.; et al. High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication. Light. Sci. Appl. 2019, 8, 94.
36. Alshaibani, S.; Alkhazragi, O.; Ashry, I.; et al. Wide-field-of-view optical detectors for deep ultraviolet light communication using all-inorganic CsPbBr3 perovskite nanocrystals. Opt. Express. 2023, 31, 25385-97.
37. Leitão, M.; Islim, M.; Yin, L.; et al. Pump-power-dependence of a CsPbBr3-in-Cs4PbBr6 quantum dot color converter. Opt. Mater. Express. 2019, 9, 3504.
38. Shan, X.; Zhu, S.; Lin, R.; et al. Improvements of the modulation bandwidth and data rate of green-emitting CsPbBr3 perovskite quantum dots for Gbps visible light communication. Opt. Express. 2023, 31, 2195-207.
39. Mei, S.; Liu, X.; Zhang, W.; et al. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS. Appl. Mater. Interfaces. 2018, 10, 5641-8.
40. Li, X.; Cai, W.; Guan, H.; et al. Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication. Chem. Eng. J. 2021, 419, 129551.
41. Singh, K.; Fan, X.; Sadhu, A.; et al. CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication. Photon. Res. 2021, 9, 2341.
42. Wang, B.; Chen, C.; Yang, X.; et al. Pressure-assisted cooling to grow ultra-stable Cs3Cu2l5 and CsCu2l3 single crystals for solid-state lighting and visible light communication. EcoMat 2022, 4, e12184.
43. Wu, T.; Lin, Y.; Huang, Y.; et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photon. Res. 2021, 9, 2132.
44. Kang, C.; Alkhazragi, O.; Sinatra, L.; et al. All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication. Opt. Express. 2022, 30, 9823-40.
45. Liang, D.; Tan, L.; Lu, S.; et al. Low-temperature solution synthesis of stable Cs3Cu2Br5 single crystals for visible light communications. ACS. Appl. Mater. Interfaces. 2023, 15, 24622-8.
46. Fu, Y.; Zhang, L.; Wangzhou, Y.; et al. Wavelength division multiplexing visible light communication with wide incident angle enabled by perovskite quantum dots. Optics. Communications. 2024, 559, 130427.
47. Xu, X.; Fu, Y.; Shi, Z.; et al. Stable and self-healing perovskite for high-speed underwater optical wireless communication. J. Mater. Chem. C. 2024, 12, 3907-14.
48. Qin, F.; Cao, Y.; Wang, C.; et al. MAPbBr3@PbBr(OH) color converter for white light emission and underwater data transmission. ACS. Appl. Opt. Mater. 2025, 3, 169-77.
49. Yang, J.; Wang, J.; Yin, Y.; Yao, H. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem. Soc. Rev. 2023, 52, 5516-40.
50. Di, J.; Chang, J.; Liu, S. Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2020, 2, e12036.
51. Mo, Q.; Chen, C.; Cai, W.; Zhao, S.; Yan, D.; Zang, Z. Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication. Laser. Photonics. Rev. 2021, 15, 2100278.
52. Chang, Y.; Yoon, Y.; Li, G.; et al. All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes. ACS. Appl. Mater. Interfaces. 2018, 10, 37267-76.
53. Sadhu, A.; Pai, Y.; Chen, L.; Hsieh, C.; Lin, H.; Kuo, H. High bandwidth semipolar (20-21) micro-LED-based white light-emitting diodes utilizing perovskite quantum dots and organic emitters in color-conversion layers for visible light communication and solid-state lighting applications. Nanoscale 2023, 15, 7715-21.
54. Yao, T.; Yang, Z.; Gu, L.; et al. In situ fabrication of multi-site contacted perovskite/organic hybrid color converter for indoor lighting and light communication. Laser. Photonics. Rev. 2025, 19, 2400758.
55. Chang, Y.; Huang, Y.; Gunawan, W. H.; et al. 4.343-Gbit/s green semipolar (20-21) μ-LED for high speed visible light communication. IEEE. Photonics. J. 2021, 13, 1-4.
56. Xu, F.; Jin, Z.; Tao, T.; et al. C-plane blue micro-LED With 1.53 GHz bandwidth for high-speed visible light communication. IEEE. Electron. Device. Lett. 2022, 43, 910-3.
57. Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth. IEEE. Electron. Device. Lett. 2018, 39, 520-3.
58. Li, Z.; Yu, L.; Liu, B.; et al. High-speed micro-LEDs based on nano-engineered InGaN active region towards chip-to-chip interconnections. J. Lightwave. Technol. 2024, 42, 8760-70.
59. Li, Z.; Zhang, X.; Hao, Z.; et al. Bandwidth analysis of high-speed InGaN micro-LEDs by an equivalent circuit model. IEEE. Electron. Device. Lett. 2023, 44, 785-8.
60. Zhao, S.; Chen, C.; Cai, W.; et al. Efficiently luminescent and stable lead-free Cs3Cu2Cl5@silica nanocrystals for white light-emitting diodes and communication. Advanced. Optical. Materials. 2021, 9, 2100307.
61. Luo, X.; Lai, R.; Li, Y.; et al. Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 2019, 141, 4186-90.
62. Qian, H.; Xiao, Y.; Liu, Z. Giant Kerr response of ultrathin gold films from quantum size effect. Nat. Commun. 2016, 7, 13153.
63. Ding, P.; Ko, P.; Geng, P.; et al. Strongly confined and spectrally tunable CsPbBr3 quantum dots for deep blue QD-LEDs. Adv. Opt. Mater. 2024, 12, 2302477.
64. Boehme, S.; Bodnarchuk, M.; Burian, M.; et al. Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS. Nano. 2023, 17, 2089-100.
65. Wei, Y.; Cheng, Z.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310-50.
66. Triana, M.; Hsiang, E.; Zhang, C.; Dong, Y.; Wu, S. Luminescent nanomaterials for energy-efficient display and healthcare. ACS. Energy. Lett. 2022, 7, 1001-20.
67. Li, S.; Pan, Y.; Wang, W.; Li, Y. CsPbX3 (X = Cl, Br, I) perovskite quantum dots embedded in glasses: recent advances and perspectives. Chem. Eng. J. 2022, 434, 134593.
68. Chen, S.; Lin, J.; Zheng, S.; Zheng, Y.; Chen, D. Efficient and stable perovskite white light-emitting diodes for backlit display. Adv. Funct. Mater. 2023, 33, 2213442.
69. Sun, K.; Tan, D.; Fang, X.; et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307-10.
70. Lin, X.; Han, Y.; Zhu, J.; Wu, K. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 2023, 18, 124-30.
71. Wang, Z.; Hou, L.; Li, J.; et al. Synthesis and optical wireless communication application of high efficiency extreme blue CsPbBr3 nanoplates. J. Mater. Chem. C. 2024, 12, 5370-6.
72. Yan, Z.; Liu, Z.; Yang, X.; et al. Perovskite quantum dot color conversion micro-LEDs: progress in stability and patterning. Opto-Electron. Eng. 2024, 7, 240088.
73. Zhang, C.; He, Z.; Chen, H.; et al. Light diffusing, down-converting perovskite-on-polymer microspheres. J. Mater. Chem. C. 2019, 7, 6527-33.
74. Zhu, S.; Qiu, P.; Shan, X.; et al. High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing. Photon. Res. 2022, 10, 1892.
75. Park, J.; Lee, E.; Park, S.; Raymond, S.; Pyo, S.; Jo, H. Modeling and analysis on radio interference of ofdm waveforms for coexistence study. IEEE. Access. 2019, 7, 35132-47.
76. Yoshida, K.; Chen, C.; Haas, H.; Turnbull, G.; Samuel, I. RGB-single-chip OLEDs for high-speed visible-light communication by wavelength-division multiplexing. Adv. Sci. (Weinh). 2024, 11, e2404576.
77. Kim, D.; Park, H.; Jung, S.; et al. Visible-Light communication with lighting: RGB wavelength division multiplexing OLEDs/OPDs platform. Adv. Mater. 2024, 36, e2309416.
78. Lu, T.; Dai, Y.; Lee, T.; et al. Experimental investigation of high-speed WDM-visible light communication using blue, green, and red InGaN µLEDs. Opt. Lett. 2024, 49, 4697-700.
79. Wang, Z.; Jin, Z.; Lin, R.; et al. Vertical stack integration of blue and yellow InGaN micro-LED arrays for display and wavelength division multiplexing visible light communication applications. Opt. Express. 2022, 30, 44260-9.
80. Hu, L.; Choi, J.; Hwangbo, S.; et al. Flexible micro-LED display and its application in Gbps multi-channel visible light communication. NPJ. Flex. Electron. 2022, 6, 234.
81. Zhang, F.; Ma, Z.; Shi, Z.; et al. Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application. Energy. Mater. Adv. 2021, 2021, 2021/5198145.
82. Fan, Q.; Biesold-McGee, G.; Ma, J.; et al. Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties. Angew. Chem. Int. Ed. Engl. 2020, 59, 1030-46.
83. Ma, Z.; Ji, X.; Lin, S.; et al. Recent advances and opportunities of eco-friendly ternary copper halides: a new superstar in optoelectronic applications. Adv. Mater. 2023, 35, e2300731.
84. Li, Y.; Zhou, Z.; Tewari, N.; et al. Progress in copper metal halides for optoelectronic applications. Mater. Chem. Front. 2021, 5, 4796-820.
85. Shi, Y.; Liang, D.; Mo, Q.; et al. Highly efficient copper-based halide single crystals with violet emission for visible light communication. Chem. Commun. (Camb). 2023, 59, 583-6.
86. Ghaderi, M. R. LiFi and hybrid WiFi/LiFi indoor networking: from theory to practice. Opt. Switching. Networking. 2023, 47, 100699.
87. Zeng, Z.; Dehghani, S. M.; Wang, Y.; Wu, X.; Haas, H. Realistic indoor hybrid WiFi and OFDMA-based LiFi networks. IEEE. Trans. Commun. 2020, 68, 2978-91.
88. Badeel, R.; Subramaniam, S.; Hanapi, Z.; Muhammed, A. A review on LiFi network research: open issues, applications and future directions. Appl. Sci. 2021, 11, 11118.
89. Xiao, H.; Zhang, K.; Xu, B.; Shen, H.; Wang, L.; Sun, C. High-brightness green CdSe/ZnS quantum dots stimulated by solar-blind deep-ultraviolet light in optical wireless communications. Opt. Lett. 2024, 49, 3596-9.
90. Memon, M.; Yu, H.; Jia, H.; et al. Quantum dots integrated deep-ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication. IEEE. Electron. Device. Lett. 2023, 44, 472-5.
91. Zhang, Y.; Jiang, M.; Han, T.; et al. Aggregation-induced emission luminogens as color converters for visible-light communication. ACS. Appl. Mater. Interfaces. 2018, 10, 34418-26.
92. Yang, X.; Shi, M.; Yu, Y.; et al. Enhancing communication bandwidths of organic color converters using nanopatterned hyperbolic metamaterials. J. Lightwave. Technol. 2018, 36, 1862-7.
93. Sajjad, M.; Manousiadis, P.; Chun, H.; et al. Novel fast color-converter for visible light communication using a blend of conjugated polymers. ACS. Photonics. 2015, 2, 194-9.
94. Yang, X.; Tong, Z.; Dai, Y.; et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun. 2021, 498, 127261.
95. Spagnolo G, Cozzella L, Leccese F. Underwater optical wireless communications: overview. Sensors. (Basel). 2020, 20, 2261.
96. Ali, M.; Jayakody, D.; Li, Y. Recent trends in underwater visible light communication (UVLC) systems. IEEE. Access. 2022, 10, 22169-225.
97. Zhu, S.; Chen, X.; Liu, X.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum. Electron. 2020, 73, 100274.
98. Shi, J.; Niu, W.; Li, Z.; et al. Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system. J. Lightwave. Technol. 2023, 41, 1626-36.
99. Chen, H.; Lin, T.; Huang, F.; Li, S.; Tang, X.; Xie, R. Laser-driven high-brightness green light for underwater wireless optical communication. Adv. Opt. Mater. 2022, 10, 2200836.
100. Yang, Y.; Hou, Y.; Wu, F.; et al. High wall-plug efficiency algan deep ultraviolet micro-leds enabled by an etched reflective array design for high data transmission. IEEE. Trans. Electron. Devices. 2024, 71, 3069-76.
101. Maclure, D.; Chen, C.; McKendry, J.; et al. Hundred-meter Gb/s deep ultraviolet wireless communications using AlGaN micro-LEDs. Opt. Express. 2022, 30, 46811-21.
102. Li, D.; Liu, S.; Qian, Z.; et al. Deep-ultraviolet micro-LEDs exhibiting high output power and high modulation bandwidth simultaneously. Adv. Mater. 2022, 34, e2109765.
103. Eisaman, M.; Fan, J.; Migdall, A.; Polyakov, S. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 2011, 82, 071101.
104. Liang, Y.; Towe, E. Progress in efficient doping of high aluminum-containing group III-nitrides. Appl. Phys. Rev. 2018, 5, 011107.
105. Shi, L.; Nihtianov, S. Comparative study of silicon-based ultraviolet photodetectors. IEEE. Sensors. J. 2012, 12, 2453-9.
106. Zhou, Y.; Fei, C.; Uddin, M.; Zhao, L.; Ni, Z.; Huang, J. Self-powered perovskite photon-counting detectors. Nature 2023, 616, 712-8.
107. Chen, F.; Li, C.; Shang, C.; et al. Ultrafast response of centimeter scale thin CsPbBr3 single crystal film photodetector for optical communication. Small 2022, 18, e2203565.
108. Pan, X.; Zhang, J.; Zhou, H.; et al. Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication. Nanomicro. Lett. 2021, 13, 70.
109. Shen, C.; Fang, S.; Zhang, J.; et al. High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering. Adv. Photon. 2024, 6.
110. Ren, A.; Wang, H.; Dai, L.; et al. High-bandwidth perovskite photonic sources on silicon. Nat. Photon. 2023, 17, 798-805.