1. Li, S.; Dutta, B.; Cannon, S.; et al. Programming active cohesive granular matter with mechanically induced phase changes. Sci. Adv. 2021, 7, eabe8494.
2. Duan, H.; Huo, M.; Fan, Y. From animal collective behaviors to swarm robotic cooperation. Nat. Sci. Rev. 2023, 10, nwad040.
3. Berlinger, F.; Gauci, M.; Nagpal, R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 2021, 6, eabd8668.
4. Shaw, E. Schooling fishes: the school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants. Am. Sci. 1978, 66, 166-75. Available from: https://www.jstor.org/stable/27848512 [Last accessed on 7 Apr 2025]
5. Partridge, B. L. The structure and function of fish schools. Sci. Am. 1982, 246, 114-23.
6. Parrish, J. K.; Viscido, S. V.; Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 2002, 202, 296-305.
7. Abdelrahman, M. K.; Wagner, R. J.; Kalairaj, M. S.; et al. Material assembly from collective action of shape-changing polymers. Nat. Mater. 2024, 23, 281-9.
8. Wagner, R. J.; Such, K.; Hobbs, E.; Vernerey, F. J. Treadmilling and dynamic protrusions in fire ant rafts. J. R. Soc. Interface. 2021, 18, 20210213.
9. Blackiston, D.; Lederer, E.; Kriegman, S.; Garnier, S.; Bongard, J.; Levin, M. A cellular platform for the development of synthetic living machines. Sci. Robot. 2021, 6, eabf1571.
10. Joh, H.; Fan, D. E. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective. Adv. Mater. 2021, 33, e2101965.
11. Sun, B.; Kjelleberg, S.; Sung, J. J. Y.; Zhang, L. Micro- and nanorobots for biofilm eradication. Nat. Rev. Bioeng. 2024, 2, 367-9.
12. Wang, Q.; Wang, Q.; Ning, Z.; et al. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 2024, 9, eadh1978.
13. Wang, Q.; Xiang, N.; Lang, J.; Wang, B.; Jin, D.; Zhang, L. Reconfigurable liquid-bodied miniature machines: magnetic control and microrobotic applications. Adv. Intell. Syst. 2024, 6, 2300108.
14. Mayorga-Martinez, C. C.; Zelenka, J.; Pribyl, T.; et al. Programming self-assembling magnetic microrobots with multiple physical and chemical intelligence. Chem. Eng. J. 2024, 488, 150625.
15. Jiang, J.; Yang, L.; Hao, B.; Xu, T.; Wu, X.; Zhang, L. Automated microrobotic manipulation using reconfigurable magnetic microswarms. IEEE. Trans. Robot. 2024, 40, 3676-94.
16. Yang, L.; Jiang, J.; Gao, X.; Wang, Q.; Dou, Q.; Zhang, L. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 2022, 4, 480-93.
17. Sitti, M. Physical intelligence as a new paradigm. Extreme. Mech. Lett. 2021, 46, 101340.
18. Feng, W.; He, Q.; Zhang, L. Embedded physical intelligence in liquid crystalline polymer actuators and robots. Adv. Mater. 2025, 37, e2312313.
19. Gelebart, A. H.; Jan, M. D.; Varga, M.; et al. Making waves in a photoactive polymer film. Nature 2017, 546, 632-6.
20. Ware, T. H.; McConney, M. E.; Wie, J. J.; Tondiglia, V. P.; White, T. J. Actuating materials. Voxelated liquid crystal elastomers. Science 2015, 347, 982-4.
21. Feng, W.; Broer, D. J.; Liu, D. Oscillating chiral-nematic fingerprints wipe away dust. Adv. Mater. 2018, 30, 1704970.
22. Babakhanova, G.; Turiv, T.; Guo, Y.; et al. Liquid crystal elastomer coatings with programmed response of surface profile. Nat. Commun. 2018, 9, 456.
23. Aharoni, H.; Xia, Y.; Zhang, X.; Kamien, R. D.; Yang, S. Universal inverse design of surfaces with thin nematic elastomer sheets. Proc. Natl. Acad. Sci. USA. 2018, 115, 7206-11.
24. Nie, Z. Z.; Zuo, B.; Wang, M.; et al. Light-driven continuous rotating Möbius strip actuators. Nat. Commun. 2021, 12, 2334.
25. Blanc, B.; Agyapong, J. N.; Hunter, I.; Galas, J. C.; Fernandez-Nieves, A.; Fraden, S. Collective chemomechanical oscillations in active hydrogels. Proc. Natl. Acad. Sci. USA. 2024, 121, e2313258121.
26. Chiang, M. Y.; Hsu, Y. W.; Hsieh, H. Y.; Chen, S. Y.; Fan, S. K. Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels. Sci. Adv. 2016, 2, e1600964.
27. Jin, D.; Wang, Q.; Chan, K. F.; et al. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 2023, 9, eadf9278.
28. Taylor, A. F.; Tinsley, M. R.; Wang, F.; Huang, Z.; Showalter, K. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 2009, 323, 614-7.
29. Tinsley, M. R.; Taylor, A. F.; Huang, Z.; Showalter, K. Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 2009, 102, 158301.
30. Tinsley, M.; Taylor, A.; Huang, Z.; Wang, F.; Showalter, K. Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles. Phys. D. Nonlinear. Phenom. 2010, 239, 785-90.
31. Toth, R.; Taylor, A. F.; Tinsley, M. R. Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B. 2006, 110, 10170-6.
32. Na, H.; Kang, Y. W.; Park, C. S.; Jung, S.; Kim, H. Y.; Sun, J. Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301-7.
33. Le, X.; Lu, W.; Zhang, J.; Chen, T. Recent progress in biomimetic anisotropic hydrogel actuators. Adv. Sci. 2019, 6, 1801584.
34. Chen, Y.; Zhang, Y.; Li, H.; et al. Bioinspired hydrogel actuator for soft robotics: opportunity and challenges. Nano. Today. 2023, 49, 101764.
35. Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog. Polym. Sci. 2023, 140, 101665.
36. Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions. ACC. Chem. Res. 2022, 55, 1533-45.
37. Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349-415.
38. López-Díaz, A.; Vázquez, A. S.; Vázquez, E. Hydrogels in soft robotics: past, present, and future. ACS. Nano. 2024, 18, 20817-26.
39. Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W. Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chem. Eng. J. 2022, 433, 133496.
40. He, J.; Zhou, Q.; Ge, Z.; et al. pH-gated switch of LCST-UCST phase transition of hydrogels. Adv. Funct. Mater. 2024, 34, 2404341.
41. Jiang, Z.; Tan, M. L.; Taheri, M.; et al. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem. Int. Ed. 2020, 59, 7049-56.
42. Ter Schiphorst, J.; Coleman, S.; Stumpel, J. E.; Ben Azouz, A.; Diamond, D.; Schenning, A. P. H. J. Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications. Chem. Mater. 2015, 27, 5925-31.
43. Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019, 31, e1807333.
44. LeValley, P. J.; Sutherland, B. P.; Jaje, J.; et al. On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels. ACS. Appl. Bio. Mater. 2020, 3, 6944-58.
45. Feng, W.; Zhou, W.; Zhang, S.; Fan, Y.; Yasin, A.; Yang, H. UV-controlled shape memory hydrogels triggered by photoacid generator. RSC. Adv. 2015, 5, 81784-9.
46. Ko, J.; Kim, C.; Kim, D.; et al. High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots. Sci. Robot. 2022, 7, eabo6463.
47. Zheng, J.; Xiao, P.; Le, X.; et al. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J. Mater. Chem. C. 2018, 6, 1320-7.
48. Gelebart, A. H.; Vantomme, G.; Meijer, E. W.; Broer, D. J. Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators. Adv. Mater. 2017, 29, 1606712.
49. Ceron, S.; Gardi, G.; Petersen, K.; Sitti, M. Programmable self-organization of heterogeneous microrobot collectives. Proc. Natl. Acad. Sci. USA. 2023, 120, e2221913120.
50. Oral, C. M.; Pumera, M. In vivo applications of micro/nanorobots. Nanoscale 2023, 15, 8491-507.
51. Kim, M.; Nicholas, J. D.; Puigmartí-Luis, J.; Nelson, B. J.; Pané, S. Targeted drug delivery: from chemistry to robotics at small scales. Annu. Rev. Control. Robot. Auton. Syst. 2024, 8.
52. Wang, T.; Wu, Y.; Yildiz, E.; Kanyas, S.; Sitti, M. Clinical translation of wireless soft robotic medical devices. Nat. Rev. Bioeng. 2024, 2, 470-85.
53. Yang, L.; Jiang, J.; Ji, F.; et al. Machine learning for micro- and nanorobots. Nat. Mach. Intell. 2024, 6, 605-18.
54. Wang, Y.; Chen, H.; Xie, L.; Liu, J.; Zhang, L.; Yu, J. Swarm autonomy: from agent functionalization to machine intelligence. Adv. Mater. 2025, 37, 2312956.
55. Nelson, B. J.; Pané, S. Delivering drugs with microrobots. Science 2023, 382, 1120-2.
56. Mayorga-Martinez, C. C.; Zhang, L.; Pumera, M. Chemical multiscale robotics for bacterial biofilm treatment. Chem. Soc. Rev. 2024, 53, 2284-99.
57. Zhu, Q. L.; Liu, W.; Khoruzhenko, O.; et al. Animating hydrogel knotbots with topology-invoked self-regulation. Nat. Commun. 2024, 15, 300.
58. Yuk, H.; Wu, J.; Zhao, X. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935-52.
59. He, Y.; Tang, J.; Hu, Y.; et al. Magnetic hydrogel-based flexible actuators: a comprehensive review on design, properties, and applications. Chem. Eng. J. 2023, 462, 142193.
60. Cheng, F. M.; Chen, H. X.; Li, H. D. Recent progress on hydrogel actuators. J. Mater. Chem. B. 2021, 9, 1762-80.
61. Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel machines. Mater. Today. 2020, 36, 102-24.
62. Puza, F.; Lienkamp, K. 3D printing of polymer hydrogels - from basic techniques to programmable actuation. Adv. Funct. Mater. 2022, 32, 2205345.
63. Dong, Y.; Ramey-Ward, A. N.; Salaita, K. Programmable mechanically active hydrogel-based materials. Adv. Mater. 2021, 33, e2006600.
64. Chen, Z.; Chen, H.; Fang, K.; Liu, N.; Yu, J. Magneto-thermal hydrogel swarms for targeted lesion sealing. Adv. Healthc. Mater. 2025, 14, e2403076.
65. Han, H.; Ma, X.; Deng, W.; et al. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci. Robot. 2024, 9, eadp3593.
66. Yoshida, R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 2010, 22, 3463-83.
67. Vantomme, G.; Elands, L. C. M.; Gelebart, A. H.; et al. Coupled liquid crystalline oscillators in Huygens' synchrony. Nat. Mater. 2021, 20, 1702-6.
68. Du, C.; Cheng, Q.; Li, K.; Yu, Y. Self-sustained collective motion of two joint liquid crystal elastomer spring oscillator powered by steady illumination. Micromachines 2022, 13, 271.
69. Wu, H.; Zhang, B.; Li, K. Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields. Phys. Rev. E. 2024, 109, 024701.
70. Deng, Z.; Zhang, H.; Priimagi, A.; Zeng, H. Light-fueled nonreciprocal self-oscillators for fluidic transportation and coupling. Adv. Mater. 2024, 36, e2209683.
71. Hu, Z.; Fang, W.; Li, Q.; Feng, X. Q.; Lv, J. A. Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators. Nat. Commun. 2020, 11, 5780.
72. Dana, A.; Benson, C.; Sivaperuman Kalairaj, M.; et al. Collective action and entanglement of magnetically active liquid crystal elastomer ribbons. arXiv 2024. Available from: https://ssrn.com/abstract=4997256 [Last accessed on 7 Apr 2025]
73. Gu, F.; Guo, W.; Yuan, Y.; et al. External field-responsive ternary non-noble metal oxygen electrocatalyst for rechargeable zinc-air batteries. Adv. Mater. 2024, 36, e2313096.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.