REFERENCES

1. Tan, Z.; Feng, X.; Yang, M.; Wang, Y. Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery. Energy 2022, 260, 125149.

2. Lu, X.; Pan, G.; Shi, Z.; Xu, B.; Lou, Y. Recent advances in interface engineering of thermoelectric nanomaterials. Mater. Chem. Front. 2023, 7, 4707-22.

3. Chen, Y.; Hong, G.; Li, L.; et al. Enlightening thermoelectric mastery: bio-inspired cellulose gel containing eco-friendly deep eutectic solvents. Chem. Eng. J. 2024, 483, 149344.

4. Miao, L.; Zhu, S.; Liu, C.; et al. Comfortable wearable thermoelectric generator with high output power. Nat. Commun. 2024, 15, 8516.

5. Beretta, D.; Perego, A.; Lanzani, G.; Caironi, M. Organic flexible thermoelectric generators: from modeling, a roadmap towards applications. Sustain. Energy. Fuels. 2017, 1, 174-90.

6. Yang, S. E.; Han, H.; Son, J. S. Recent progress in 3D printing of Bi2Te3-based thermoelectric materials and devices. J. Phys. Energy. 2024, 6, 022003.

7. Muddasar, M.; Menéndez, N.; Quero, Á.; et al. Highly-efficient sustainable ionic thermoelectric materials using lignin-derived hydrogels. Adv. Compos. Hybrid. Mater. 2024, 7, 863.

8. Li, C.; Jiang, F.; Liu, C.; Liu, P.; Xu, J. Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today. 2019, 15, 543-57.

9. Du, K.; Wu, C. An innovative tubular thermoelectric generator (TTEG) for enhanced waste heat recovery in industrial and automotive applications. Appl. Sci. 2024, 14, 685.

10. Wang, J.; Chen, Y.; Liu, Y.; Liu, G.; Cai, R. Harvesting waste heat based on thermoelectric generation to drive LED car lamps. J. Therm. Anal. Calorim. 2024, 149, 3427-42.

11. Su, H.; Lin, P.; Lu, H.; Chen, Y. Efficient solar-thermal conversion and thermal energy storage towards personal thermal management and thermoelectric power generation enabled by massive screen printing of carbon nanotube dopped energy storage gels. J. Energy. Storage. 2024, 76, 109782.

12. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

13. Chen, C.; Xu, F. Q.; Wu, Y.; et al. Manipulating hetero-nanowire films for flexible and multifunctional thermoelectric devices. Adv. Mater. 2024, 36, e2400020.

14. Han, Y.; Wei, H.; Du, Y.; et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel. Adv. Sci. (Weinh). 2023, 10, e2302685.

15. Gu, H.; Kang, S.; Fu, Y.; et al. High seebeck coefficient inorganic Ge15Ga10Te75 core/polymer cladding fibers for respiration and body temperature monitoring. ACS. Appl. Mater. Interfaces. 2023, 15, 59768-75.

16. Gupta, A.; Agrawal, S.; Pal, Y. Effect of thermoelectric materials in electrical and thermal performance of photovoltaic thermal (PVT) collector. IOP. Conf. Ser:. Mater. Sci. Eng. 2019, 691, 012036.

17. Zhang, Y.; Wang, W.; Zhang, F.; et al. Soft organic thermoelectric materials: principles, current state of the art and applications. Small 2022, 18, e2104922.

18. Shi, X. L.; Zou, J.; Chen, Z. G. Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 2020, 120, 7399-515.

19. He, J.; Xu, J.; Tan, X.; et al. Synthesis of SnTe/AgSbSe2 nanocomposite as a promising lead-free thermoelectric material. J. Materiomics. 2016, 2, 165-71.

20. Zhang, C.; de, M. M.; Li, Z.; et al. Enhanced thermoelectric performance of solution-derived bismuth telluride based nanocomposites via liquid-phase Sintering. Nano. Energy. 2016, 30, 630-8.

21. Chen, Y.; Nisar, M.; Qin, W.; et al. Integration of boron nitride into tin-enriched SnSe2 for a high-performance thermoelectric nanocomposite with optimized electrical transport and mechanical properties. Adv. Funct. Mater. 2025, 202425050.

22. Liu, W.; Yin, L.; Li, L.; et al. Grain boundary re-crystallization and sub-nano regions leading to high plateau figure of merit for Bi2Te3 nanoflakes. Energy. Environ. Sci. 2023, 16, 5123-35.

23. Gordillo, J. M.; Morata, A.; Sierra, C. D.; Salleras, M.; Fonseca, L.; Tarancón, A. Recent advances in silicon-based nanostructures for thermoelectric applications. APL. Materials. 2023, 11, 040702.

24. Yao, G.; Chen, Y.; Wang, S.; et al. Boosting thermoelectric performance of PbBi2Te4 via reduced carrier scattering and intensified phonon scattering. Small 2024, 20, e2400449.

25. Tan, X.; Wang, L.; Shao, H.; et al. Improving thermoelectric performance of α-mgagsb by theoretical band engineering design. Adv. Energy. Mater. 2017, 7, 1700076.

26. Yu, L.; Wei, S. T.; Wang, L. J.; et al. Band engineering and phonon engineering Effectively improve n-type Mg3Sb2 thermoelectric material properties. ACS. Appl. Mater. Interfaces. 2023, 15, 53594-603.

27. Slade, T. J.; Anand, S.; Wood, M.; et al. Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. Joule 2021, 5, 1168-82.

28. Hanus, R.; Agne, M. T.; Rettie, A. J. E.; et al. Lattice softening significantly reduces thermal conductivity and leads to high thermoelectric efficiency. Adv. Mater. 2019, 31, e1900108.

29. Tan, G.; Hao, S.; Hanus, R. C.; et al. High thermoelectric performance in SnTe-AgSbTe2 alloys from lattice softening, giant phonon-vacancy scattering, and valence band convergence. ACS. Energy. Lett. 2018, 3, 705-12.

30. Muchtar, A. R.; Srinivasan, B.; Tonquesse, S. L.; et al. Physical insights on the lattice softening driven mid-temperature range thermoelectrics of Ti/Zr-inserted SnTe - an outlook beyond the horizons of conventional phonon scattering and excavation of heikes’ equation for estimating carrier properties. Adv. Energy. Mater. 2021, 11, 2101122.

31. Liu, M.; Guo, M.; Zhu, J.; et al. High-performance CaMg2Bi2-based thermoelectric materials driven by lattice softening and orbital alignment via cadmium doping. Adv. Funct. Mater. 2024, 34, 2316075.

32. Shen, X.; Zhang, B.; Chen, Q.; et al. Synergistically optimized thermoelectric properties of Ag1+xIn5Se8 alloys. Inorg. Chem. Front. 2019, 6, 3545-53.

33. Zhong, J.; Yang, X.; Lyu, T.; et al. Nuanced dilute doping strategy enables high-performance GeTe thermoelectrics. Sci. Bull. (Beijing). 2024, 69, 1037-49.

34. Tippireddy, S.; Azough, F.; Vikram; et al. Local structural distortions and reduced thermal conductivity in Ge-substituted chalcopyrite. J. Mater. Chem. A. 2022, 10, 23874-85.

35. Parashchuk, T.; Wiendlocha, B.; Cherniushok, O.; Knura, R.; Wojciechowski, K. T. High thermoelectric performance of p-type PbTe enabled by the synergy of resonance scattering and lattice softening. ACS. Appl. Mater. Interfaces. 2021, 13, 49027-42.

36. Chen, Y.; Fu, Z.; Wu, Y.; et al. Giant heterogeneous magnetostriction induced by charge accumulation-mediated nanoinclusion formation in dual-phase nanostructured systems. Acta. Materialia. 2021, 213, 116975.

37. Guan, C.; Chen, B.; Jiang, L.; et al. Atomic-scale insights into ω-variants in Galfenol triggered by displacive-diffusive transformation. Mater. Design. 2021, 205, 109745.

38. Rahman, N.; Gou, J.; Liu, X.; Ma, T.; Yan, M. Enhanced magnetostriction of Fe81Ga19 by approaching an instable phase boundary. Scripta. Materialia. 2018, 146, 200-3.

39. Guo, S.; Li, H.; Lu, Y.; Liu, Z.; Hu, X. Lattice softening enables highly reversible sodium storage in anti-pulverization Bi-Sb alloy/carbon nanofibers. Energy. Storage. Mater. 2020, 27, 270-8.

40. Mizoguchi, H.; Park, S. W.; Hosono, H. A view on formation gap in transition metal hydrides and its collapse. J. Am. Chem. Soc. 2021, 143, 11345-8.

41. Yang, J.; Zhang, X.; Ge, B.; et al. Effect of Zn migration on the thermoelectric properties of Zn4Sb3 material. Ceram. Int. 2017, 43, 15275-80.

42. Zhang, D.; He, P.; Liu, G.; et al. High thermoelectric performance of PbSe via a synergistic band engineering and dislocation approach. Scripta. Materialia. 2024, 244, 116003.

43. Bai, Y.; Li, X.; Ouyang, T.; et al. High thermoelectric performance in the n-type Bi2S3/f-MWCNTs nanocomposites prepared by hydrothermal method. Carbon 2023, 212, 118158.

44. Lv, H. Y.; Lu, W. J.; Shao, D. F.; Lu, H. Y.; Sun, Y. P. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C. 2016, 4, 4538-45.

45. Guo, Z.; Wang, J.; Yin, W. Atomistic origin of lattice softness and its impact on structural and carrier dynamics in three dimensional perovskites. Energy. Environ. Sci. 2022, 15, 660-71.

46. Zhang, G.; Zhang, Y. Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 2015, 91, 382-98.

47. Wu, Y.; Chen, Z.; Nan, P.; et al. Lattice strain advances thermoelectrics. Joule 2019, 3, 1276-88.

48. Sprague, L. W.; Huang, C.; Song, J.; Rubenstein, B. M. Maximizing thermoelectric figures of merit by uniaxially straining indium selenide. J. Phys. Chem. C. 2019, 123, 25437-47.

49. Yu, C.; Zhang, G.; Zhang, Y.; Peng, L. Strain engineering on the thermal conductivity and heat flux of thermoelectric Bi2Te3 nanofilm. Nano. Energy. 2015, 17, 104-10.

50. Song, X.; Wang, G.; Gan, S.; et al. Triaxial strain enhanced thermoelectric performance and conversion efficiency in Tl3TaSe4. J. Alloys. Compd. 2024, 1004, 175896.

51. Huang, M.; Yan, H.; Chen, C.; Song, D.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7304-8.

52. Xu, B.; Liao, Y.; Fang, Z.; et al. Extremely suppressed thermal conductivity of large-scale nanocrystalline silicon through inhomogeneous internal strain engineering. J. Mater. Chem. A. 2023, 11, 19017-24.

53. Moure, A.; Rull-bravo, M.; Abad, B.; et al. Thermoelectric skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces. Nano. Energy. 2017, 31, 393-402.

54. Mustafa, G.; Minhas, N.; Singh, H.; et al. Lattice softness regulates recombination and lifetime of carrier in Germanium doped CsPbI2Br perovskite: first principles DFT and NAMD simulations. J. Solid. State. Chem. 2023, 322, 123981.

55. Lee, S.; Esfarjani, K.; Luo, T.; Zhou, J.; Tian, Z.; Chen, G. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 2014, 5, 3525.

56. Hu, J.; Zhu, J.; Dong, X.; et al. Breaking the minimum limit of thermal conductivity of Mg3Sb2 thermoelectric mediated by chemical alloying induced lattice instability. Small 2023, 19, e2301382.

57. Back, S. Y.; Cho, H.; Kim, Y.; et al. Enhancement of thermoelectric properties by lattice softening and energy band gap control in Te-deficient InTe1-δ. AIP. Advances. 2018, 8, 115227.

58. Zhang, Y.; Li, Y.; Mao, W.; Zhang, X.; Zhang, J.; Luo, J. Balancing structural stability and thermoelectric performance of GeMnTe2 by manipulating the complexity of cation sublattice. Mater. Today. Phys. 2025, 52, 101693.

59. Zhang, C.; Jin, K.; Dong, H.; et al. Synergistic enhancement of thermoelectric performance of n-type PbTe by resonant level and single-atom-layer vacancies. Nano. Energy. 2024, 126, 109615.

60. Zhu, H.; Zhao, C.; Nan, P.; et al. intrinsically low lattice thermal conductivity in natural superlattice (Bi2)m(Bi2Te3)n thermoelectric materials. Chem. Mater. 2021, 33, 1140-8.

61. Yang, W. J.; Ha, T.; Park, B. C.; et al. Switching to hidden metallic crystal phase in phase-change materials by photoenhanced metavalent bonding. ACS. Nano. 2022, 16, 2024-31.

62. Zhang, W.; Zhang, H.; Sun, S.; et al. Metavalent bonding in layered phase-change memory materials. Adv. Sci. 2023, 10, 2370094.

63. Guarneri, L.; Jakobs, S.; von, H. A.; et al. Metavalent bonding in crystalline solids: how does it collapse? Adv. Mater. 2021, 33, e2102356.

64. Sarkar, D.; Roychowdhury, S.; Arora, R.; et al. Metavalent bonding in gese leads to high thermoelectric performance. Angew. Chem. Int. Ed. Engl. 2021, 60, 10350-8.

65. Pathak, R.; Joseph, A.; Dutta, P.; et al. Impact of pressure on metavalent bonding in bite influencing electronic topological transitions. Angew. Chem. Int. Ed. Engl. 2025, 64, e202422652.

66. Liu, Y.; Zhang, X.; Nan, P.; et al. Improved solubility in metavalently bonded solid leads to band alignment, ultralow thermal conductivity, and high thermoelectric performance in SnTe. Adv. Funct. Mater. 2022, 32, 2209980.

67. Wang, Y.; Long, Z.; Cheng, Y.; et al. Chemical bonding engineering for high-symmetry Cu2S-based materials with high thermoelectric performance. Mater. Today. Phys. 2023, 32, 101028.

68. Zhu, T.; Su, X.; Zhang, Q.; Tang, X. Structural transformation and thermoelectric performance in Ag2Te1-xSex solid solution. J. Alloys. Compd. 2021, 871, 159507.

69. Rundle, J.; Leoni, S. Layered tin chalcogenides SnS and SnSe: lattice thermal conductivity benchmarks and thermoelectric figure of merit. J. Phys. Chem. C. Nanomater. Interfaces. 2022, 126, 14036-46.

70. Guo, F.; Liu, M.; Zhu, J.; et al. Suppressing lone-pair expression endows room-temperature cubic structure and high thermoelectric performance in GeTe-based materials. Mater. Today. Phys. 2022, 27, 100780.

71. Shrestha, R.; Luan, Y.; Shin, S.; et al. High-contrast and reversible polymer thermal regulator by structural phase transition. Sci. Adv. 2019, 5, eaax3777.

72. Wang, Y.; Xiao, J.; Zhu, H.; et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 2017, 550, 487-91.

73. Migliorini, A.; Kuerbanjiang, B.; Huminiuc, T.; et al. Spontaneous exchange bias formation driven by a structural phase transition in the antiferromagnetic material. Nat. Mater. 2018, 17, 28-35.

74. Xiao, C.; Xu, J.; Li, K.; Feng, J.; Yang, J.; Xie, Y. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 2012, 134, 4287-93.

75. Singh, B.; Gupta, M. K.; Mittal, R.; Chaplot, S. L. Ab initio molecular dynamics study of 1-D superionic conduction and phase transition in β-eucryptite. J. Mater. Chem. A. 2018, 6, 5052-64.

76. Lee, S.; Lin, Z.; Huang, J.; et al. Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 2020, 3, 630-7.

77. Ruta, F. L.; Kim, B. S. Y.; Sun, Z.; et al. Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures. Nat. Commun. 2022, 13, 3719.

78. Xie, Y.; Wang, C.; Fei, F.; et al. Tunable optical topological transitions of plasmon polaritons in WTe2 van der Waals films. Light. Sci. Appl. 2023, 12, 193.

79. Sinha, S.; Adak, P. C.; Chakraborty, A.; et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 2022, 18, 765-70.

80. Shen, X.; Heid, R.; Hott, R.; et al. Precursor region with full phonon softening above the charge-density-wave phase transition in 2H-TaSe2. Nat. Commun. 2023, 14, 7282.

81. Wang, S.; Sun, Y.; Yang, J.; et al. High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening. Energy. Environ. Sci. 2016, 9, 3436-47.

82. Yang, S.; Lin, C.; He, X.; et al. Unlocking ultralow thermal conductivity in α-CuTeI via specific symmetry breaking in Cu sublattice. Adv. Funct. Mater. 2025, 35, 2419776.

83. Guin, S. N.; Sanyal, D.; Biswas, K. The effect of order-disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals. Chem. Sci. 2016, 7, 534-43.

84. Shen, X.; Koza, M. M.; Tung, Y. H.; et al. Soft phonon mode triggering fast Ag diffusion in superionic argyrodite Ag8GeSe6. Small 2023, 19, e2305048.

85. Beaulieu, S.; Dong, S.; Tancogne-Dejean, N.; et al. Ultrafast dynamical Lifshitz transition. Sci. Adv. 2021, 7, eabd9275.

86. Jung, H.; Jin, K. H.; Sung, M.; Kim, J.; Kim, J.; Yeom, H. W. Quantum-confined lifshitz transition on weyl semimetal Td-MoTe2. ACS. Nano. 2024, 18, 23189-95.

87. Chi, Z.; Zhang, J.; Gong, Z.; et al. Pressure-induced Lifshitz transition in the type-II Weyl semimetal WP2. Mater. Today. Phys. 2024, 42, 101372.

88. Wu, W.; Shi, Z.; Du, Y.; et al. Topological Lifshitz transition and one-dimensional Weyl mode in HfTe5. Nat. Mater. 2023, 22, 84-91.

89. Noad, H. M. L.; Ishida, K.; Li, Y. S.; et al. Giant lattice softening at a Lifshitz transition in Sr2RuO4. Science 2023, 382, 447-50.

90. Zhang, D.; Yang, J.; Bai, H.; et al. Significant average ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p-d hybridization. J. Mater. Chem. A. 2019, 7, 17648-54.

91. Liang, J.; Yang, H.; Liu, C.; et al. Realizing a high ZT of 1.6 in N-type Mg3Sb2-based Zintl compounds through Mn and Se codoping. ACS. Appl. Mater. Interfaces. 2020, 12, 21799-807.

92. Tang, S.; Bai, S.; Wu, M.; et al. Improving thermoelectric performance of asymmetrical Janus 1T-SnSSe monolayer by the synergistic effect of band convergence and crystal lattice softening under strain engineering. Mater. Today. Phys. 2022, 29, 100923.

93. Kim, H.; Park, G.; Park, S.; Kim, W. Strategies for manipulating phonon transport in solids. ACS. Nano. 2021, 15, 2182-96.

94. Zhao, Y.; Zhang, G.; Nai, M. H.; et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, e1804928.

95. Zhao, Y.; Yang, L.; Kong, L.; et al. Ultralow thermal conductivity of single-crystalline porous silicon nanowires. Adv. Funct. Mater. 2017, 27, 1702824.

96. Cappai, A.; Melis, C.; Marongiu, D.; et al. Strong anharmonicity at the origin of anomalous thermal conductivity in double perovskite Cs2NaYbCl6. Adv. Sci. (Weinh). 2024, 11, e2305861.

97. Jiang, B.; Wang, W.; Liu, S.; et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022, 377, 208-13.

98. Han, S.; Dai, S.; Ma, J.; et al. Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nat. Phys. 2023, 19, 1649-57.

99. Tan, X. J.; Liu, G. Q.; Shao, H. Z.; et al. Acoustic phonon softening and reduced thermal conductivity in Mg2Si1-x Snx solid solutions. Appl. Phys. Lett. 2017, 110, 143903.

100. Chen, Z.; Tian, Z.; Zheng, L.; et al. (Ho0.25Lu0.25Yb0.25Eu0.25)2SiO5 high-entropy ceramic with low thermal conductivity, tunable thermal expansion coefficient, and excellent resistance to CMAS corrosion. J. Adv. Ceram. 2022, 11, 1279-93.

101. Kucinski, T. M.; Dhall, R.; Savitzky, B. H.; et al. Direct measurement of the thermal expansion coefficient of epitaxial WSe2 by four-dimensional scanning transmission electron microscopy. ACS. Nano. 2024, 18, 17725-34.

102. Onodera, Y.; Kohara, S.; Masai, H.; Koreeda, A.; Okamura, S.; Ohkubo, T. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass. Nat. Commun. 2017, 8, 15449.

103. Kano, E.; Malac, M.; Hayashida, M. Substrate and contamination effects on the thermal expansion coefficient of suspended graphene measured by electron diffraction. Carbon 2020, 163, 324-32.

104. Zhang, Y.; Feng, J.; Ge, Z. Enhanced thermoelectric performance of Cu1.8S via lattice softening. Chem. Eng. J. 2022, 428, 131153.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/