REFERENCES

1. Ladasiu, C.; Kulischow, N.; Marschall, R. Tuning the photocatalytic activity of layered perovskite niobates by controlled ion exchange and hydration. Catal. Sci. Technol. 2022, 12, 1450-7.

2. Kulischow, N.; Ade, M.; Weiss, M.; Marschall, R. Nitrogen-doped, proton-exchanged Dion-Jacobson layered niobate perovskites for photocatalytic hydrogen generation in solar light. Photochem. Photobiol. Sci. 2022, 21, 1991-2000.

3. Xia, R.; Chen, J.; Liang, R.; Zhou, Z. The positive effect of A-site nonstoichiometry on the electrical properties of Sr2Nb2O7 ceramics for high temperature piezoelectric sensor application. Ceram. Int. 2022, 48, 22459-67.

4. Pan, C.; Zhang, J. C.; Zhang, M.; et al. Trap-controlled mechanoluminescence in Pr3+-activated M2Nb2O7 (M = Sr, Ca) isomorphic perovskites. Opt. Mater. Express. 2018, 8, 1425-34.

5. Kodera, M.; Moriya, Y.; Katayama, M.; Hisatomi, T.; Minegishi, T.; Domen, K. Investigation on nitridation processes of Sr2Nb2O7 and SrNbO3 to SrNbO2N for photoelectrochemical water splitting. Sci. Rep. 2018, 8, 15849.

6. Guo, Y.; Guo, W.; Lei, L.; Xu, J. Oxide ion conduction and transporting mechanism in the layered perovskite-related material Sr2Nb2O7. Scripta. Mater. 2022, 221, 114962.

7. Sakai, A.; Kanno, T.; Takahashi, K.; Yamada, Y.; Adachi, H. Large anisotropic thermoelectricity in perovskite related layered structure: SrnNbnO3n+2 (n = 4, 5). J. Appl. Phys. 2010, 108, 103706.

8. Schmalle, H. W.; Williams, T.; Reller, A.; Lichtenberg, F.; Widmer, D.; Bednorz, J. G. A novel semiconducting perovskite-related phase: Sr5Nb5O17. Acta. Cryst. C. Cryst. Struct. Commun. 1995, 51, 1243-6.

9. Kuntscher, C. A.; Schuppler, S.; Haas, P.; et al. Extremely small energy gap in the quasi-one-dimensional conducting chain compound SrNbO3.41. Phys. Rev. Lett. 2002, 89, 236403.

10. Abrahams, S. C.; Schmalle, H. W.; Williams, T.; et al. Centrosymmetric or Noncentrosymmetric? Case study, generalization and structural redetermination of Sr5Nb5O17. Acta. Cryst. B. Struct. Sci. 1998, 54, 399-416.

11. Zhou, Z.; Chen, T.; Liu, X.; Liang, R. Phase transitions and ferroelectricity of perovskite layered Sr2Nb2O7 ceramics. J. Phys. Chem. Solids. 2022, 169, 110888.

12. Song, Y. M.; Dai, J. Q.; Zhang, H. Influence of oxygen vacancy on electric structure and optical properties of pure and N-doped Sr2M2O7 (M = Nb, Ta). Comput. Mater. Sci. 2017, 127, 180-6.

13. Chen, T.; Liang, R.; Jiang, K.; Hu, Z.; Zhou, Z.; Dong, X. Low-temperature sintering and electrical properties of Sr2Nb2O7 piezoceramics by CuO addition. J. Am. Ceram. Soc. 2017, 100, 2397-401.

14. Cai, X.; Teng, Y.; Wu, L.; Zhang, K. Hot-press sintering Sr2Nb2O7 ceramics and their electrical properties. J. Mater. Sci. Mater. Electron. 2017, 28, 4239-44.

15. Liou, Y. C.; Tsai, W. C.; Yu, J. Y. Effects of La addition on properties of Sr2Nb2O7 thermoelectric ceramics. J. Electron. Mater. 2015, 44, 4857-63.

16. Ojeda-Galván, H. J.; Rodríguez-Aranda, M. D. C.; Rodríguez, Á. G.; et al. Structural and Raman study of the thermoelectric solid solution Sr1.9La0.1Nb2O7. J. Raman. Spectrosc. 2021, 52, 737-49.

17. Chen, G.; Gong, C. W.; Fu, C. L.; et al. Microstructure and dielectric properties of (Ba, Ta) Co-doped Sr2Nb2O7 ceramics. Mater. Sci. Forum. 2015, 815, 125-8.

18. Xiang, L.; Chen, G.; Fu, C.; Cai, W.; Wang, W.; Liu, K. Effect of Ta doping on the microstructure, dielectric and ferroelectric properties of Sr2Nb2O7 ceramics. Ferroelectrics 2014, 467, 165-72.

19. Yuan, Y.; Han, X.; Dong, H.; Zhou, X. First-principles calculation of chalcogen-doped Sr2M2O7 (M=Nb and Ta) for visible light photocatalysis. J. Solid. State. Chem. 2022, 308, 122905.

20. Geng, J.; Chen, Y.; Gu, G.; Tian, L. Tunable white-light-emitting Sr2-xCaxNb2O7:Pr3+ phosphor by adjusting the concentration of Ca2+ ion. Opt. Mater. 2014, 36, 1093-6.

21. Wang, C. M.; Wang, J. F.; Zhang, S.; Shrout, T. R. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics. Phys. Rapid. Res. Lett. 2009, 3, 49-51.

22. Peng, Z.; Chen, L.; Xiang, Y.; Cao, F. Microstructure and electrical properties of lanthanides-doped CaBi2Nb2O9 ceramics. Mater. Res. Bull. 2022, 148, 111670.

23. Gavin, A. L.; Watson, G. W. Defects in orthorhombic LaMnO3 - ionic versus electronic compensation. Phys. Chem. Chem. Phys. 2018, 20, 19257-67.

24. Lichtenberg, F.; Herrnberger, A.; Wiedenmann, K.; Mannhart, J. Synthesis of perovskite-related layered AnBnO3n+2 = ABOX type niobates and titanates and study of their structural, electric and magnetic properties. Prog. Solid. State. Chem. 2001, 29, 1-70.

25. Chen, C.; Yin, D.; Inoue, K.; et al. Atomic-scale origin of the quasi-one-dimensional metallic conductivity in strontium niobates with perovskite-related layered structures. ACS. Nano. 2017, 11, 12519-25.

26. Chen, C.; Wang, Z.; Lichtenberg, F.; Ikuhara, Y.; Bednorz, J. G. Patterning oxide nanopillars at the atomic scale by phase transformation. Nano. Lett. 2015, 15, 6469-74.

27. Chen, C.; Lv, S.; Wang, Z.; et al. Atomic and electronic structure of the SrNbO3/SrNbO3.4 interface. Appl. Phys. Lett. 2014, 105, 221602.

28. Fu, C.; Liu, H.; Chen, G.; Cai, W.; Deng, X. Microstructure and electric properties of strontium lanthanum niobate ceramics. Ferroelectrics 2012, 432, 8-13.

29. Coelho, A. A.; Evans, J.; Evans, I.; Kern, A.; Parsons, S. The TOPAS symbolic computation system. Powder. Diffr. 2011, 26, S22-5.

30. Gale, J. D.; Rohl, A. L. The general utility lattice program (GULP). Mol. Simul. 2003, 29, 291-341.

31. Julian, D. G. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday. Trans. 1997, 93, 629-37.

32. Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710-7.

33. Fichera, B. T.; Kogar, A.; Ye, L.; et al. Second harmonic generation as a probe of broken mirror symmetry. arXiv 2019, 1909.12850.

34. Alange, R. C.; Khirade, P. P.; Birajdar, S. D.; Humbe, A. V.; Jadhav, K. M. Structural, magnetic and dielectrical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 2016, 1106, 460-7.

35. Xiong, X.; Tian, R.; Lin, X.; Chu, D.; Li, S. Thermoelectric properties of sol-gel derived lanthanum titanate ceramics. RSC. Adv. 2015, 5, 14735-9.

36. Zheng, X.; Wang, S.; Wang, J.; Hua, W.; Zhang, J.; Liu, L. Long-range and short-range transport dynamics of Li ions in LiMn2O4. J. Phys. Chem. C. 2020, 124, 25254-61.

37. Ang, C.; Yu, Z.; Cross, L. E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Phys. Rev. B. 2000, 62, 228.

38. Gerhardt, R. Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids. 1994, 55, 1491-506.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/