REFERENCES
1. Wang, G.; Lu, Z.; Li, Y.; et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 2021, 121, 6124-72.
2. Sun, Z.; Wang, Z.; Tian, Y.; et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Elect. Mater. 2020, 6, 1900698.
3. Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 2016, 116, 4260-317.
4. Xiong, X.; Liu, H.; Zhang, J.; et al. Ultrahigh energy-storage in dual-phase relaxor ferroelectric ceramics. Adv. Mater. 2024, 36, e2410088.
5. Liu, Y.; Liu, J.; Pan, H.; et al. Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 2022, 34, e2108772.
6. Yang, H.; Yan, F.; Lin, Y.; Wang, T. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS. Sustain. Chem. Eng. 2017, 5, 10215-22.
7. Jayakrishnan, A. R.; Silva, J. P. B.; Kamakshi, K.; et al. Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors? Prog. Mater. Sci. 2023, 132, 101046.
8. Peng, H.; Wu, T.; Liu, Z.; et al. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232.
9. Yang, B.; Liu, Y.; Gong, C.; et al. Design of high-entropy relaxor ferroelectrics for comprehensive energy storage enhancement. Adv. Funct. Mater. 2024, 34, 2409344.
10. Liu, G.; Li, Y.; Guo, B.; et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J. 2020, 398, 125625.
11. Duan, J.; Wei, K.; Du, Q.; Ma, L.; Qi, H.; Li, H. High-entropy tungsten bronze ceramics for large capacitive energy storage with near-zero losses. Adv. Funct. Mater. 2024, 34, 2409446.
12. Liu, J.; Jiang, Y.; Zhang, W.; et al. Ferroelectric tungsten bronze-based ceramics with high-energy storage performance via weakly coupled relaxor design and grain boundary optimization. Nat. Commun. 2024, 15, 8651.
13. Wan, R.; Zhang, H.; Sheng, L.; et al. Outstanding energy density and charge-discharge performances in Sr2KNb5O15-based tungsten bronze ceramics for dielectric capacitor applications. Ceram. Int. 2024, 50, 37126-35.
14. Yang, B.; Gao, Y.; Li, J.; et al. Tailoring Zr-doped tungsten bronze (Sr,Ba,Gd)Nb2O6 relaxor ferroelectric with high electrical insulation interface for dielectric capacitor. Compos. Part. B. Eng. 2024, 271, 111189.
15. Li, S.; Yan, Z.; You, Y.; et al. Enhancement of energy storage and luminescent performances in tungsten bronze multifunctional ceramics. Ceram. Int. 2024, 50, 14223-31.
16. Dan, Y.; Zheng, X.; Meng, Y.; et al. Simultaneously achieving large energy storage density and high efficiency in the optimized
17. Dan, Y.; Tang, L.; Ning, W.; et al. Achieving enhanced energy storage performance and ultra-fast discharge time in tungsten-bronze ceramic. J. Adv. Ceram. 2024, 13, 1349-58.
18. Feng, W. B.; Zhu, X. L.; Liu, X. Q.; Chen, X. M. Effects of B site ions on the relaxor to normal ferroelectric transition crossover in
19. Zhu, X. L.; Bai, Y.; Liu, X. Q.; Chen, X. M. Ferroelectric phase transition and low-temperature dielectric relaxations in
20. Zhu, X. L.; Li, K.; Chen, X. M.; Green, D. J. Ferroelectric transition and low-temperature dielectric relaxations in filled tungsten bronzes. J. Am. Ceram. Soc. 2014, 97, 329-38.
21. Huang, C. J.; Li, K.; Liu, X. Q.; Zhu, X. L.; Chen, X. M. Effects of A1/A2-sites occupancy upon ferroelectric transition in
22. Tidey, J. P.; Dey, U.; Sanchez, A. M.; et al. Structural origins of dielectric anomalies in the filled tetragonal tungsten bronze
23. Cao, L.; Wang, Y.; Yuan, Y.; et al. Low temperature relaxor, polarization dynamics and energy storage properties of Ca0.28Ba0.72Nb2O6 tungsten bronze ceramics. Chem. Eng. J. 2024, 479, 147664.
24. Peng, H.; Liu, Z.; Fu, Z.; et al. Superior energy density achieved in unfilled tungsten bronze ferroelectrics via multiscale regulation strategy. Adv. Sci. 2023, 10, e2300227.
25. Hou, S.; Wang, X.; Liu, X.; et al. Significant increase in comprehensive energy storage performances of Ca0.5(Sr0.5Ba0.5)2Nb5O15-based tungsten bronze relaxor ceramics. J. Eur. Ceram. Soc. 2023, 43, 6854-63.
26. Xu, S.; Shen, S.; Huang, C.; et al. Enhancing energy storage performance in lead-free bismuth sodium niobate-based tungsten bronze ceramics through relaxor tuning. ACS. Appl. Mater. Interfaces. 2023, 15, 11642-51.
27. Li, W.; Hao, J.; Li, W.; et al. Electrical properties and luminescence properties of 0.96(K0.48Na0.52)(Nb0.95Sb0.05)-
28. Roukos, R.; Zaiter, N.; Chaumont, D. Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides
29. Li, X.; Du, Y.; Ge, L.; et al. Engineering polarization in the ferroelectric electrocatalysts to boost water electrolysis. Adv. Funct. Mater. 2023, 33, 2210194.
30. Li, R.; Pu, Y.; Zhang, Q.; et al. The relationship between enhanced dielectric property and structural distortion in Ca doped
31. Fleury, P. A. The effects of soft modes on the structure and properties of materials. Annu. Rev. Mater. Sci. 1976, 6, 157-80.
32. Liu, J.; Li, F.; Zeng, Y.; et al. Insights into the dielectric response of ferroelectric relaxors from statistical modeling. Phys. Rev. B. 2017, 96, 054115.
33. Liu, L.; Ren, S.; Zhang, J.; Peng, B.; Fang, L.; Wang, D. Revisiting the temperature-dependent dielectric permittivity of Ba(Ti1-xZrx)O3. J. Am. Ceram. Soc. 2018, 101, 2408-16.
34. Zhong, X. Y.; Yan, G. W.; Chen, Z. H. Structure and energy storage properties of (1-x)Ba0.98Li0.02TiO3 based ceramics with
35. Cao, L.; Yuan, Y.; Yang, Z.; Li, E.; Zhang, S. Crystal structure, relaxor behaviors and energy storage performance of
36. Aamlid, S. S.; Selbach, S. M.; Grande, T. Structural evolution of ferroelectric and ferroelastic barium sodium niobate tungsten bronze. Inorg. Chem. 2020, 59, 8514-21.
37. Yao, Y. B.; Mak, C. L.; Ploss, B. Phase transitions and electrical characterizations of (K0.5Na0.5)2x(Sr0.6Ba0.4)5-xNb10O30 (KNSBN) ceramics with ‘unfilled’and ‘filled’tetragonal tungsten-bronze (TTB) crystal structure. J. Eur. Ceram. Soc. 2012, 32, 4353-61.
38. Jiang, X.; Hao, H.; Zhou, J.; et al. Optimized energy storage properties of BaTiO3-based ceramics with enhanced grain boundary effect. J. Mater. Sci. Mater. Electron. 2021, 32, 14328-36.
39. Zhang, T. F.; Tang, X. G.; Huang, X. X.; Liu, Q. X.; Jiang, Y. P.; Zhou, Q. F. High-temperature dielectric relaxation behaviors of relaxer-like PbZrO3-SrTiO3 ceramics for energy-storage applications. Energy. Technol. 2016, 4, 633-40.
40. Viehland, D.; Jang, S. J.; Cross, L. E.; Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 1990, 68, 2916-21.
41. Feng, W. B.; Zhu, X. L.; Liu, X. Q.; et al. Relaxor nature in Ba5RZr3Nb7O30 (R = La, Nd, Sm) tetragonal tungsten bronze new system. J. Am. Ceram. Soc. 2018, 101, 1623-31.
42. Ogihara, H.; Randall, C. A.; Trolier-Mckinstry, S. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J. Am. Ceram. Soc. 2009, 92, 1719-24.
43. Spasojevic, I.; Sauthier, G.; Caicedo, J. M.; Verdaguer, A.; Domingo, N. Oxidation processes at the surface of BaTiO3 thin films under environmental conditions. Appl. Surf. Sci. 2021, 565, 150288.
44. Idriss, H. On the wrong assignment of the XPS O1s signal at 531-532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 2021, 712, 121894.