REFERENCES
1. Kumar K, Chen PY, Ren H. A review of printable flexible and stretchable tactile sensors. Research 2019, 2019, 3018568.
2. Mohammed, A. M.; Maddipatla, D.; Narakathu, B. B.; et al. Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sensors. Actuators. A. Phys. 2018, 274, 109-15.
3. Hassan Y, Hu H. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part. A. Appl. Sci. Manuf. 2020, 138, 106064.
4. Hu, H.; Zhang, F.; Luo, S.; Chang, W.; Yue, J.; Wang, C. H. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage. Nano. Energy. 2020, 74, 104844.
5. Yan, T.; Wang, Z.; Pan, Z. J. Flexible strain sensors fabricated using carbon-based nanomaterials: a review. Curr. Opin. Solid. State. Mater. Sci. 2018, 22, 213-28.
6. Fan, X.; Liu, Y.; Zhang, G.; et al. Optimization of mechanical property and sensing performance in CNF/fly ash-based geopolymer composites. J. Cent. South. Univ. 2024, 55, 907-17.
7. Aziz, S.; Jung, K. C.; Chang, S. H. Stretchable strain sensor based on a nanocomposite of zinc stannate nanocubes and silver nanowires. Compos. Struct. 2019, 224, 111005.
8. Fang, W.; Jang, H. W.; Leung, S. N. Evaluation and modelling of electrically conductive polymer nanocomposites with carbon nanotube networks. Compos. Part. B. Eng. 2015, 83, 184-93.
9. Fu, R.; Zhao, X.; Zhang, X.; Su, Z. Design strategies and applications of wearable piezoresistive strain sensors with dimensionality-based conductive network structures. Chem. Eng. J. 2025, 454, 140467.
10. Njuguna, M. K.; Yan, C.; Hu, N.; Bell, J. M.; Yarlagadda, P. K. D. V. Sandwiched carbon nanotube film as strain sensor. Compos. Part. B. Eng. 2012, 43, 2711-7.
11. Zhang, W.; Liu, Q.; Chen, P. Flexible strain sensor based on carbon black/silver nanoparticles composite for human motion detection. Materials 2018, 11, 1836.
12. Yang, Y.; Wang, H.; Hou, Y.; et al. MWCNTs/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics. Compos. Sci. Technol. 2022, 226, 109518.
13. Zhang, F.; Wu, S.; Peng, S.; Sha, Z.; Wang, C. H. Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 2019, 172, 7-16.
14. Zhang, F.; Hu, H.; Islam, M.; et al. Multi-modal strain and temperature sensor by hybridizing reduced graphene oxide and PEDOT:PSS. Compos. Sci. Technol. 2020, 187, 107959.
15. Zhang, F.; Wu, S.; Peng, S.; Wang, C. H. The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Compos. Sci. Technol. 2018, 165, 131-9.
16. Hu, H.; Ma, Y.; Yue, J.; Zhang, F. Porous GNP/PDMS composites with significantly reduced percolation threshold of conductive filler for stretchable strain sensors. Compos. Commun. 2022, 29, 101033.
17. Fan, X.; Hu, H.; Liao, B.; Zhang, Y.; Zhang, F. Optimization of microstructure design for enhanced sensing performance in flexible piezoresistive sensors. J. Adv. Ceram. 2024, 13, 711-28.
18. Hassan, M.; Liu, S.; Liang, Z.; et al. Revisiting traditional and modern trends in versatile 2D nanomaterials: synthetic strategies, structural stability, and gas-sensing fundamentals. J. Adv. Ceram. 2023, 12, 2149-246.
19. Soe, H. M.; Abd, M. A.; Matsuda, A.; Jaafar, M. Performance of a silver nanoparticles-based polydimethylsiloxane composite strain sensor produced using different fabrication methods. Sensors. Actuators. A. Phys. 2021, 329, 112793.
20. Chen, X.; Zhao, X.; Huang, X.; et al. Flexible multilevel nonvolatile biocompatible memristor with high durability. J. Nanobiotechnol. 2023, 21, 375.
21. Wang, C.; Xu, Q.; Hu, J.; et al. Graphene/SiC-coated textiles with excellent electromagnetic interference shielding, Joule heating, high-temperature resistance, and pressure-sensing performances. J. Adv. Ceram. 2023, 12, 778-91.
22. Hu, H.; Zhang, F. Rational design of self-powered sensors with polymer nanocomposites for human-machine interaction. Chin. J. Aeronaut. 2022, 35, 155-77.
23. Soomro, A. M.; Khalid, M. A. U.; Shah, I.; Kim, S. W.; Kim, Y. S.; Choi, K. H. Highly stable soft strain sensor based on Gly-KCl filled sinusoidal fluidic channel for wearable and water-proof robotic applications. Smart. Mater. Struct. 2020, 29, 025011.
24. Bu, Y.; Shen, T.; Yang, W.; et al. Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci. Bull. 2021, 66, 1849-57.
25. Dong, H.; Sun, J.; Liu, X.; Jiang, X.; Lu, S. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS. Appl. Mater. Interfaces. 2022, 14, 15504-16.
26. Chen, T.; Xie, Y.; Wang, Z.; et al. Recent advances of flexible strain sensors based on conductive fillers and thermoplastic polyurethane matrixes. ACS. Appl. Polym. Mater. 2021, 3, 5317-38.
27. Li, M.; Li, H.; Zhong, W.; Zhao, Q.; Wang, D. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS. Appl. Mater. Interfaces. 2014, 6, 1313-9.
28. Chen, J.; Zhu, Y.; Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos. Sci. Technol. 2020, 186, 107938.
29. Qin, Y.; Peng, Q.; Ding, Y.; et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS. Nano. 2015, 9, 8933-41.
30. Boland, C. S.; Khan, U.; Backes, C.; et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS. Nano. 2014, 8, 8819-30.
31. Xu, R.; Lu, Y.; Jiang, C.; et al. Facile fabrication of three-dimensional graphene foam/poly(dimethylsiloxane) composites and their potential application as strain sensor. ACS. Appl. Mater. Interfaces. 2014, 6, 13455-60.
32. Tian, H.; Shu, Y.; Cui, Y. L.; et al. Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 2014, 6, 699-705.
33. Kang, S.; Pradana, R. V.; Baek, J.; Lee, S. Y.; Park, S. A flexible patch-type strain sensor based on polyaniline for continuous monitoring of pulse waves. IEEE. Access. 2020, 8, 152105-15.
34. Qian, Q.; Wang, Y.; Zhang, M.; et al. Ultrasensitive paper-based polyaniline/graphene composite strain sensor for sign language expression. Compos. Sci. Technol. 2019, 181, 107660.
35. Shao, G.; Jiang, J.; Jiang, M.; et al. Polymer-derived SiBCN ceramic pressure sensor with excellent sensing performance. J. Adv. Ceram. 2020, 9, 374-9.
36. Xue, S.; Tang, Z.; Zhu, W.; Li, Y.; Huang, P.; Fu, S. Stretchable and ultrasensitive strain sensor from carbon nanotube-based composite with significantly enhanced electrical and sensing properties by tailoring segregated conductive networks. Compos. Commun. 2022, 29, 100987.
37. Khalid, M. A. U.; Chang, S. H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: a review. Compos. Struct. 2022, 284, 115214.
38. Souri, H.; Banerjee, H.; Jusufi, A.; et al. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv. Intell. Syst. 2020, 2, 2000039.
39. Liu, H.; Li, Q.; Zhang, S.; et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C. 2018, 6, 12121-41.
40. Hu, H. Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos. Part. B. Eng. 2020, 195, 108094.
41. Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta. Mater. 2008, 56, 2929-36.
42. Zhang, F.; Hu, H.; Hu, S.; Yue, J. Significant strain-rate dependence of sensing behavior in TiO2@carbon fibre/PDMS composites for flexible strain sensors. J. Adv. Ceram. 2021, 10, 1350-9.
43. Abdullahi, H. Y.; Chen, L.; Geng, X.; et al. Electrocaloric effect of structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration. ACS. Appl. Mater. Interfaces. 2021, 13, 46681-93.
44. Zhou, Q.; Wang, Y.; Zhu, T.; Lian, M.; Nguyen, D. H.; Zhang, C. Highly stretchable, self-healable and wide temperature-tolerant deep eutectic solvent-based composite ionogels for skin-inspired strain sensors. Compos. Commun. 2023, 41, 101658.
45. Ma, Z.; Zhang, Y.; Jiang, R.; et al. Highly stretchable and room-temperature self-healing sheath-core structured composite fibers for ultrasensitive strain sensing and visual thermal management. Compos. Sci. Technol. 2024, 248, 110460.