REFERENCES
2. Shirane G, Sawaguchi E, Takagi Y. Dielectric properties of lead zirconate. Phys Rev 1951;84:476-81.
3. Sawaguchi E, Maniwa H, Hoshino S. Antiferroelectric structure of lead zirconate. Phys Rev 1951;83:1078.
4. Randall CA, Fan Z, Reaney I, Chen L, Trolier-mckinstry S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J Am Ceram Soc 2021;104:3775-810.
5. Liu Z, Lu T, Ye J, et al. Antiferroelectrics for energy storage applications: a review. Adv Mater Technol 2018;3:1800111.
6. Pan WY, Dam CQ, Zhang QM, Cross LE. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics. J Appl Phys 1989;66:6014-23.
7. Pirc R, Rožič B, Koruza J, Malič B, Kutnjak Z. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL 2014;107:17002.
8. Tan X, Ma C, Frederick J, Beckman S, Webber KG. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc 2011;94:4091-107.
9. Liu C, Si Y, Zhang H, et al. Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films. Science 2023;382:1265-9.
10. Si Y, Zhang T, Liu C, et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog Mater Sci 2024;142:101231.
11. Chauhan A, Patel S, Vaish R, Bowen CR. Anti-ferroelectric ceramics for high energy density capacitors. Materials 2015;8:8009-31.
12. Liu G, Chen L, Qi H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023;3:2023009.
13. Roy Chaudhuri A, Arredondo M, Hähnel A, et al. Epitaxial strain stabilization of a ferroelectric phase in PbZrO3 thin films. Phys Rev B 2011;84:054112.
14. Liu Y, Niu R, Majchrowski A, et al. Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO3. Phys Rev Lett 2023;130:216801.
15. Yao Y, Naden A, Tian M, et al. Ferrielectricity in the archetypal antiferroelectric, PbZrO3. Adv Mater 2023;35:e2206541.
16. Jiang RJ, Cao Y, Geng WR, et al. Atomic insight into the successive antiferroelectric-ferroelectric phase transition in antiferroelectric oxides. Nano Lett 2023;23:1522-9.
17. Fu Z, Chen X, Li Z, et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat Commun 2020;11:3809.
18. Ma T, Fan Z, Xu B, et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys Rev Lett 2019;123:217602.
19. Burkovsky RG, Lityagin GA, Ganzha AE, et al. Field-induced heterophase state in PbZrO3 thin films. Phys Rev B 2022;105:125409.
20. Wei XK, Dunin-Borkowski RE, Mayer J. Structural phase transition and in-situ energy storage pathway in nonpolar materials: a review. Materials 2021;14:7854.
21. Jia CL, Nagarajan V, He JQ, et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat Mater 2007;6:64-9.
22. Chisholm MF, Luo W, Oxley MP, Pantelides ST, Lee HN. Atomic-scale compensation phenomena at polar interfaces. Phys Rev Lett 2010;105:197602.
23. Hytch MJ, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998;74:131-46.
24. Tang YL, Zhu YL, Ma XL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015;348:547-51.
25. Liu Y, Wang YJ, Zhu YL, et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett 2017;17:7258-66.
26. Liu Y, Cui X, Niu R, et al. Giant room temperature compression and bending in ferroelectric oxide pillars. Nat Commun 2022;13:335.
27. Nord M, Vullum PE, MacLaren I, Tybell T, Holmestad R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv Struct Chem Imaging 2017;3:9.
28. Boldyreva K, Bao D, Le Rhun G, Pintilie L, Alexe M, Hesse D. Microstructure and electrical properties of (120)O-oriented and of (001)O-oriented epitaxial antiferroelectric PbZrO3 thin films on (100) SrTiO3 substrates covered with different oxide bottom electrodes. J Appl Phys 2007;102:044111.
29. Lu H, Glinsek S, Buragohain P, Defay E, Iñiguez J, Gruverman A. Probing antiferroelectric-ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy. Adv Funct Mater 2020;30:2003622.
30. Corker DL, Glazer AM, Dec J, Roleder K, Whatmore RW. A re-investigation of the crystal structure of the perovskite PbZrO3 by
31. Saeed U, Pesquera D, Liu Y, et al. Switching dynamics and improved efficiency of free-standing antiferroelectric capacitors. Adv Electron Mater 2024:2400102.
32. Liu Y, Niu RM, Moss SD, Finkel P, Liao XZ, Cairney JM. Atomic coordinates and polarization map around a pair of ½a[01
33. Cabral MJ, Chen Z, Liao X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 2023;3:2023040.
34. Dmowski W, Egami T, Farber L, et al. Structure of Pb(Zr,Ti)O3 near the morphotropic phase boundary. AIP Conf Proc 2001;582:33-44.
35. Joseph J, Vimala TM, Sivasubramanian V, Murthy VRK. Structural investigations on Pb(ZrxT1-x)O3 solid solutions using the X-ray rietveld method. J Mater Sci 2000;35:1571-5.
36. Tolédano P, Guennou M. Theory of antiferroelectric phase transitions. Phys Rev B 2016;94:014107.
37. Reyes-Lillo SE, Rabe KM. Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO3 from first principles. Phys Rev B 2013;88:180102(R).
38. Vales-Castro P, Roleder K, Zhao L, Li J, Kajewski D, Catalan G. Flexoelectricity in antiferroelectrics. Appl Phys Lett 2018;113:132903.
39. Xu R, Crust KJ, Harbola V, et al. Size-induced ferroelectricity in antiferroelectric oxide membranes. Adv Mater 2023;35:e2210562.
40. Mani BK, Chang CM, Lisenkov S, Ponomareva I. Critical thickness for antiferroelectricity in PbZrO3. Phys Rev Lett 2015;115:097601.
41. Han MJ, Wang YJ, Ma DS, et al. Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO3 films driven by interfacial oxygen octahedral coupling. Acta Mater 2018;145:220-6.