REFERENCES
1. Kang, G.; Hu, S.; Guo, C.; Arul, R.; Sibug-Torres, S. M.; Baumberg, J. J. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat. Commun. 2024, 15, 9220.
2. Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification. Nat. Commun. 2024, 15, 3212.
3. Park, S. H.; Kim, S.; Park, J. W.; Kim, S.; Cha, W.; Lee, J. In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO2 film. Nat. Commun. 2024, 15, 5416.
4. Kang, Y.; João, S. M.; Lin, R.; et al. Effect of crystal facets in plasmonic catalysis. Nat. Commun. 2024, 15, 3923.
5. Wu, H.; Yu, H.; Chow, Y. L.; Webley, P. A.; Zhang, J. Toward durable CO2 electroreduction with Cu-based catalysts via understanding their deactivation modes. Adv. Mater. 2024, 36, e2403217.
6. Liu, S.; Tao, H.; Zeng, L.; et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160-3.
7. Li, H.; Du, H.; Luo, H.; Wang, H.; Zhu, W.; Zhou, Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023, 3, 2023024.
8. Qu, J.; Cao, X.; Gao, L.; et al. Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nanomicro. Lett. 2023, 15, 178.
9. Wang, D.; Mao, J.; Zhang, C.; et al. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023, 3, 100119.
10. Niu, Z. Z.; Chi, L. P.; Wu, Z. Z.; Yang, P. P.; Fan, M. H.; Gao, M. R. CO2-assisted formation of grain boundaries for efficient CO-CO coupling on a derived Cu catalyst. Natl. Sci. Open. 2023, 2, 20220044.
11. Yuan, X.; Shen, D.; Zhang, Q.; Zou, H.; Liu, Z.; Peng, F. Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem. Eng. J. 2019, 369, 292-301.
12. Li, J.; Lou, Z.; Li, B. Nanostructured materials with localized surface plasmon resonance for photocatalysis. Chin. Chem. Lett. 2022, 33, 1154-68.
13. Wang, T.; Wang, H.; Lin, J.; et al. Plasmonic photocatalysis: mechanism, applications and perspectives. Chin. J. Struct. Chem. 2023, 42, 100066.
14. Lin, W.; Ghulam, N. A.; Palma, M.; Di, T. D. Copper nanowires for electrochemical CO2 reduction reaction. ACS. Appl. Nano. Mater. 2024, 7, 27883-98.
15. Jang, Y. H.; Jang, Y. J.; Kim, S.; Quan, L. N.; Chung, K.; Kim, D. H. Plasmonic solar cells: from rational design to mechanism overview. Chem. Rev. 2016, 116, 14982-5034.
16. Cheng, P.; Ziegler, M.; Ripka, V.; et al. Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation. ACS. Appl. Mater. Interfaces. 2022, 14, 16894-900.
17. Zhang, S.; Huang, F.; Guo, X.; et al. Boosting the efficiency of dye-sensitized solar cells by a multifunctional composite photoanode to 14.13 . Angew. Chem. Int. Ed. 2023, 62, e202302753.
18. Phengdaam, A.; Nootchanat, S.; Ishikawa, R.; et al. Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms. J. Sci. Adv. Mater. Dev. 2021, 6, 264-70.
19. Lee, S.; Dang, H.; Moon, J. I.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394-427.
20. Chang, K.; Zhao, Y.; Wang, M.; et al. Advances in metal-organic framework-plasmonic metal composites based SERS platforms: engineering strategies in chemical sensing, practical applications and future perspectives in food safety. Chem. Eng. J. 2023, 459, 141539.
21. Li, Z.; Zhai, L.; Zhang, Q.; et al. 1T'-transition metal dichalcogenide monolayers stabilized on 4H-Au nanowires for ultrasensitive SERS detection. Nat. Mater. 2024, 23, 1355-62.
22. Liu, Y.; Ma, H.; Han, X. X.; Zhao, B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater. Horiz. 2021, 8, 370-82.
23. Belushkin, A.; Yesilkoy, F.; Altug, H. Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray. ACS. Nano. 2018, 12, 4453-61.
24. Yang, W.; Lim, D. K. Recent advances in the synthesis of intra-nanogap Au plasmonic nanostructures for bioanalytical applications. Adv. Mater. 2020, 32, e2002219.
25. Chen, Y.; Bai, Y.; Wang, X.; Zhang, H.; Zheng, H.; Gu, N. Plasmonic/magnetic nanoarchitectures: from controllable design to biosensing and bioelectronic interfaces. Biosens. Bioelectron. 2023, 219, 114744.
26. Fan, Z.; Bosman, M.; Huang, Z.; et al. Heterophase fcc-2H-fcc gold nanorods. Nat. Commun. 2020, 11, 3293.
27. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-76.
28. Ha, M.; Kim, J. H.; You, M.; Li, Q.; Fan, C.; Nam, J. M. Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures. Chem. Rev. 2019, 119, 12208-78.
29. Cha, S. K.; Mun, J. H.; Chang, T.; et al. Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS. Nano. 2015, 9, 5536-43.
30. Wang, X.; Ge, Y.; Sun, M.; et al. Facet-controlled synthesis of unconventional-phase metal alloys for highly efficient hydrogen oxidation. J. Am. Chem. Soc. 2024, 146, 24141-9.
31. Ge, Y.; Wang, X.; Chen, B.; et al. Preparation of fcc-2H-fcc Heterophase Pd@Ir nanostructures for high-performance electrochemical hydrogen evolution. Adv. Mater. 2022, 34, e2107399.
32. Ge, Y.; Huang, Z.; Ling, C.; et al. Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles. J. Am. Chem. Soc. 2020, 142, 18971-80.
33. Zhu, J.; Jia, T. T.; Li, J. J.; Li, X.; Zhao, J. W. Plasmonic spectral determination of Hg(II) based on surface etching of Au-Ag core-shell triangular nanoplates: From spectrum peak to dip. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2019, 207, 337-47.
34. Yang, X. Q.; Lu, Y.; Liu, Y.; Wang, J.; Shao, L.; Wang, J. F. Heterostructures built through site-selective deposition on anisotropic plasmonic metal nanocrystals and their applications. Small. Struct. 2021, 2, 2100101.
35. Tanwar, S.; Anantha, P.; Wu, L.; Barman, I. Self-assembled bimetallic Au-Ag nanorod vertical array for single molecule plasmonic sensing. ACS. Appl. Nano. Mater. 2024, 7, 1636-45.
36. Wu, F.; Xia, S.; Wei, J.; Gao, W.; Li, F.; Niu, W. Metallic heterostructures for plasmon-enhanced electrocatalysis. Chemphyschem 2023, 24, e202200881.
37. Kuhn, A. N.; Zhao, H.; Nwabara, U. O.; et al. Engineering silver-enriched copper core-shell electrocatalysts to enhance the production of ethylene and C2+ chemicals from carbon dioxide at low cell potentials. Adv. Funct. Mater. 2021, 31, 2101668.
38. Kim, S.; Kim, J. M.; Park, J. E.; Nam, J. M. Nonnoble-metal-based plasmonic nanomaterials: recent advances and future perspectives. Adv. Mater. 2018, 30, e1704528.
39. Bodelón, G.; Costas, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M. Gold nanoparticles for regulation of cell function and behavior. Nano. Today. 2017, 13, 40-60.
40. Ross, M. B.; Schatz, G. C. Aluminum and indium plasmonic nanoantennas in the ultraviolet. J. Phys. Chem. C. 2014, 118, 12506-14.
41. Kim, T. I.; Park, I. J.; Choi, S. Y. Synthesis of ultrathin metal nanowires with chemically exfoliated tungsten disulfide nanosheets. Nano. Lett. 2020, 20, 3740-6.
42. Chen, J.; Feng, J.; Yang, F.; Aleisa, R.; Zhang, Q.; Yin, Y. Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem. Int. Ed. 2019, 58, 9275-81.
43. Lu, S.; Yu, H.; Gottheim, S.; et al. Polymer-directed growth of plasmonic aluminum nanocrystals. J. Am. Chem. Soc. 2018, 140, 15412-8.
44. Robatjazi, H.; Lou, M.; Clark, B. D.; et al. Site-selective nanoreactor deposition on photocatalytic Al nanocubes. Nano. Lett. 2020, 20, 4550-7.
45. Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649-735.
46. Huo, D.; Kim, M. J.; Lyu, Z.; Shi, Y.; Wiley, B. J.; Xia, Y. One-dimensional metal nanostructures: from colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972-9073.
47. Zhang, L.; Doyle-Davis, K.; Sun, X. Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy. Environ. Sci. 2019, 12, 492-517.
48. McGrath, A. J.; Chien, Y. H.; Cheong, S.; et al. Gold over branched palladium nanostructures for photothermal cancer therapy. ACS. Nano. 2015, 9, 12283-91.
49. Chen, J.; Zhou, J.; Peng, Y.; et al. Highly-adaptable optothermal nanotweezers for trapping, sorting, and assembling across diverse nanoparticles. Adv. Mater. 2024, 36, e2309143.
50. Chen, J.; Chen, Z.; Meng, C.; et al. CRISPR-powered optothermal nanotweezers: diverse bio-nanoparticle manipulation and single nucleotide identification. Light. Sci. Appl. 2023, 12, 273.
51. Feng, Q.; Zhao, X.; Guo, Y.; Liu, M.; Wang, P. Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons. Biosens. Bioelectron. 2018, 108, 97-102.
52. Yin, B. S.; Hu, J. Q.; Ding, S. Y.; et al. Identifying mass transfer influences on Au nanoparticles growth process by centrifugation. Chem. Commun. 2012, 48, 7353-5.
53. Boas, D.; Remennik, S.; Reches, M. Peptide-capped Au and Ag nanoparticles: detection of heavy metals and photochemical core/shell formation. J. Colloid. Interface. Sci. 2023, 631, 66-76.
54. Li, Z. Y.; Young, N. P.; Di, V. M.; et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 2008, 451, 46-8.
55. Qin, Y.; Wu, Y.; Wang, B.; Wang, J.; Yao, W. Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids. J. Alloys. Compd. 2021, 884, 161053.
56. Hussain, S.; Pal, A. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. Mater. Lett. 2008, 62, 1874-7.
57. Khodashenas, B.; Ghorbani, H. R. Synthesis of silver nanoparticles with different shapes. Arabian. J. Chem. 2019, 12, 1823-38.
58. García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267-90.
59. El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles. Arabian. J. Chem. 2010, 3, 135-40.
60. Zhao, Y.; Liu, L.; Kuang, H.; Wang, L.; Xu, C. SERS-active Ag@Au core-shell NP assemblies for DNA detection. RSC. Adv. 2014, 4, 56052-6.
61. Zhang, P.; Sui, Y.; Wang, C.; et al. A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering. Nanoscale 2014, 6, 5343-50.
62. Hsia, C.; Chang, C.; Huang, M. H. Unusually large lattice mismatch-induced optical behaviors of Au@Cu-Cu2O core-shell nanocrystals with noncentrally located cores. Part. Part. Syst. Charact. 2018, 35, 1800112.
63. Roberts, F. S.; Kuhl, K. P.; Nilsson, A. Electroreduction of carbon monoxide over a copper nanocube catalyst: surface structure and pH dependence on selectivity. ChemCatChem 2016, 8, 1119-24.
64. Jeon, H. S.; Kunze, S.; Scholten, F.; Roldan, C. B. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS. Catal. 2018, 8, 531-5.
65. Lee, J. W.; Han, J.; Lee, D. S.; et al. 2D single-crystalline copper nanoplates as a conductive filler for electronic ink applications. Small 2018, 14, 1703312.
66. Hoang, T. T. H.; Ma, S.; Gold, J. I.; Kenis, P. J. A.; Gewirth, A. A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS. Catal. 2017, 7, 3313-21.
67. Wang, Y.; Shen, H.; Livi, K. J. T.; et al. Copper nanocubes for CO2 reduction in gas diffusion electrodes. Nano. Lett. 2019, 19, 8461-8.
68. Nitopi, S.; Bertheussen, E.; Scott, S. B.; et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610-72.
69. Lei, Q.; Zhu, H.; Song, K.; et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213-22.
70. Ma, Z.; Tsounis, C.; Kumar, P. V.; et al. Enhanced electrochemical CO2 reduction of Cu@CuxO nanoparticles decorated on 3D vertical graphene with intrinsic sp3-type defect. Adv. Funct. Mater. 2020, 30, 1910118.
71. Hang, Y.; Wang, A.; Wu, N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem. Soc. Rev. 2024, 53, 2932-71.
72. Huang, Z.; Meng, G.; Hu, X.; et al. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano. Res. 2019, 12, 449-55.
73. Qi, Y.; Xing, T.; Zhao, J.; et al. Tuning the surface enhanced Raman scattering performance of anisotropic Au core-Ag shell hetero-nanostructure: the effect of core geometry. J. Alloys. Compd. 2019, 776, 934-47.
74. Hsia, C.; Madasu, M.; Huang, M. H. Aqueous phase synthesis of Au-Cu core-shell nanocubes and octahedra with tunable sizes and noncentrally located cores. Chem. Mater. 2016, 28, 3073-9.
75. Lyu, Z.; Xie, M.; Aldama, E.; et al. Au@Cu core-shell nanocubes with controllable sizes in the range of 20-30 nm for applications in catalysis and plasmonics. ACS. Appl. Nano. Mater. 2019, 2, 1533-40.
76. Wang, Y.; Kong, J.; Xue, R.; et al. Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor. Nano. Res. 2023, 16, 1558-67.
77. Zhong, Y.; Kong, X.; Song, Z.; et al. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling toward CO2 eletroreduction. Nano. Lett. 2022, 22, 2554-60.
78. Zhang, S.; Zhao, S.; Qu, D.; et al. Electrochemical reduction of CO2 Toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness. Small 2021, 17, e2102293.
79. Wu, X.; Tian, X.; Jiang, Z.; et al. Engineering the inter-island plasmonic coupling in homometallic Au-Aun core-satellite structures. Nano. Res. 2023, 16, 10690-7.
80. Yin, Z.; Wang, Y.; Song, C.; et al. Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering. J. Am. Chem. Soc. 2018, 140, 864-7.
81. Yang, Y.; Zhu, J.; Zhao, J.; Weng, G. J.; Li, J. J.; Zhao, J. W. Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core-shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein. ACS. Appl. Mater. Interfaces. 2019, 11, 3617-26.
82. Zhang, X.; Fu, Q.; Duan, H.; Song, J.; Yang, H. Janus nanoparticles: from fabrication to (bio)applications. ACS. Nano. 2021, 15, 6147-91.
83. Xu, Y.; Shi, L.; Jing, X.; Miao, H.; Zhao, Y. SERS-active composites with Au-Ag Janus nanoparticles/perovskite in immunoassays for staphylococcus aureus enterotoxins. ACS. Appl. Mater. Interfaces. 2022, 14, 3293-301.
84. Woessner, Z. J.; Skrabalak, S. E. Symmetry-reduced metal nanostructures offer new opportunities in plasmonics and catalysis. J. Phys. Chem. C. 2021, 125, 23587-96.
85. Agrawal, G.; Agrawal, R. Janus nanoparticles: recent advances in their interfacial and biomedical applications. ACS. Appl. Nano. Mater. 2019, 2, 1738-57.
86. Qiu, J.; Xie, M.; Lyu, Z.; Gilroy, K. D.; Liu, H.; Xia, Y. General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth. Nano. Lett. 2019, 19, 6703-8.
87. Feng, J.; Yang, F.; Wang, X.; Lyu, F.; Li, Z.; Yin, Y. Self-aligned anisotropic plasmonic nanostructures. Adv. Mater. 2019, 31, e1900789.
88. Wang, J.; Luo, D.; Cai, Y.; Li, X. L.; Chen, H. Y.; Xu, J. J. A plasmonic Au-Ag janus nanoprobe for monitoring endogenous hydrogen sulfide generation in living cells. Biosens. Bioelectron. 2022, 213, 114422.
89. Xu, Y.; Jin, Z.; Zhao, Y. Tunable preparation of SERS-active Au-Ag Janus@Au NPs for label-free staphylococcal enterotoxin C detection. J. Agric. Food. Chem. 2023, 71, 1224-33.
90. Zeng, P.; Hang, L.; Zhang, G.; et al. Atom absorption energy directed symmetry-breaking synthesis of Au-Ag hierarchical nanostructures and their efficient photothermal conversion. Small 2022, 18, e2204748.
91. Wu, G. F.; Zhu, J.; Weng, G. J.; Cai, H. Y.; Li, J. J.; Zhao, J. W. Morphology and optical properties of Au-Ag hybrid nanoparticles regulation and its ultra-sensitive SERS immunoassay detection in carbohydrate antigen 19-9. Talanta 2024, 275, 126131.
92. Fan, X.; An, S.; Jia, J.; et al. Tuning Au-Cu Janus structures through strong ligand-mediated interfacial energy control. Chem. Mater. 2022, 34, 6057-67.
93. Zhang, T.; Zhang, B.; Zang, Y.; Zeng, P.; Li, Y.; Fan, H. J. A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface. Chem 2024, 10, 2745-60.
94. Huang, J.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490-9.
95. Ma, Y.; Yu, J.; Sun, M.; et al. Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 2022, 34, e2110607.
96. Fleischmann, M.; Hendra, P.; Mcquillan, A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-6.
97. Dong, S.; He, D.; Zhang, Q.; et al. Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning. eLight 2023, 3, 51.
98. Arabi, M.; Ostovan, A.; Wang, Y.; et al. Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat. Commun. 2022, 13, 5757.
99. Hu, J.; Chen, G. J.; Xue, C.; et al. RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light. Sci. Appl. 2024, 13, 52.
100. Wang, X.; Hou, J.; Chen, C.; et al. Non-invasive detection of systemic lupus erythematosus using SERS serum detection technology and deep learning algorithms. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2024, 320, 124592.
101. Yang, J.; Chen, X.; Luo, C.; et al. Application of serum SERS technology combined with deep learning algorithm in the rapid diagnosis of immune diseases and chronic kidney disease. Sci. Rep. 2023, 13, 15719.
102. Chen, J.; Hu, J.; Xue, C.; et al. Combined mutual learning net for raman spectral microbial strain identification. Anal. Chem. 2024, 96, 5824-31.
103. Yi, L.; Zhang, J.; Wu, J.; et al. Micro-macro SERS strategy for highly sensitive paper cartridge with trace-level molecular detection. Biosens. Bioelectron. 2024, 264, 116665.
104. Cardellini, J.; Dallari, C.; De, S. I.; et al. Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications. Nat. Commun. 2024, 15, 7975.
105. Hopper, E. R.; Boukouvala, C.; Asselin, J.; Biggins, J. S.; Ringe, E. Opportunities and challenges for alternative nanoplasmonic metals: magnesium and beyond. J. Phys. Chem. C. Nanomater. Interfaces. 2022, 126, 10630-43.
106. Jiang, N.; Zhuo, X.; Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 2018, 118, 3054-99.
107. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002-69.
108. Yang, Y.; Liu, J.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153-6.
109. Du, H. F.; Zhu, J.; Weng, G. J.; Li, J. J.; Li, X.; Zhao, J. W. Site-selective growth and plasmonic spectral properties of L-shaped Janus Au-Ag gold nanodumbbells for surface-enhanced Raman scattering. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2023, 299, 122862.
110. Hao, H. L.; Zhu, J.; Weng, G. J.; Li, J. J.; Guo, Y. B.; Zhao, J. W. Exclusive core-Janus satellite assembly based on Au-Ag Janus self-aligned distributions with abundant hotspots for ultrasensitive detection of CA19-9. ACS. Sens. 2024, 9, 942-54.
111. Zhang, W.; Liu, J.; Niu, W.; Yan, H.; Lu, X.; Liu, B. Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering. ACS. Appl. Mater. Interfaces. 2018, 10, 14850-6.
112. Wang, Z.; Zhou, Y.; Wang, J.; et al. Site-specific growth of Ag islands on concave Au nanocubes for SERS and LSPR-based applications. ACS. Appl. Nano. Mater. 2024, 7, 22002-10.
113. Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209-17.
114. Zhao, X.; Wang, J.; Jia, Y. Block copolymer-templated surface-enhanced Raman scattering-active nanofibers for hydrogen sulfide detection. Talanta 2024, 270, 125608.
115. Gandra, N.; Abbas, A.; Tian, L.; Singamaneni, S. Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano. Lett. 2012, 12, 2645-51.
116. Le, T.; Vo, T.; Gwon, Y.; Lee, H.; Lee, S. Fiber-optic sensing system using polyhedral plasmonic nanostructures as SERS-active substrates. ACS. Appl. Nano. Mater. 2024, 7, 21114-23.
117. Ding, Z.; Wang, P.; Li, Z.; Guo, Y.; Ma, Q. Sulfur dots/Au@Ag nanorods array-based polarized ECL sensor for the detection of thyroid cancer biomarker. Talanta 2023, 265, 124925.
118. Zhao, C. Q.; Zhou, J.; Wu, K. W.; Ding, S. N.; Xu, J. J.; Chen, H. Y. Plasmonic enhanced gold nanoclusters-based photoelectrochemical biosensor for sensitive alkaline phosphatase activity analysis. Anal. Chem. 2020, 92, 6886-92.
119. Zhang, W. S.; Wang, Y. N.; Xu, Z. R. High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles. Anal. Chim. Acta. 2020, 1094, 106-12.
120. Zhu, X.; Zhuo, X.; Li, Q.; Yang, Z.; Wang, J. Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv. Funct. Mater. 2016, 26, 341-52.
121. He, Z.; Zhu, J.; Li, X.; Weng, G. J.; Li, J. J.; Zhao, J. W. Au@Ag nanopencil with Au tip and Au@Ag rod: multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO-. Small 2023, 19, e2302302.
122. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.
123. Lee, H.; Park, Y.; Song, K.; Park, J. Y. Surface plasmon-induced hot carriers: generation, detection, and applications. Acc. Chem. Res. 2022, 55, 3727-37.
124. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano. Lett. 2018, 18, 2545-50.
125. Song, K.; Lee, H.; Lee, M.; Park, J. Y. Plasmonic hot hole-driven water splitting on Au nanoprisms/P-type GaN. ACS. Energy. Lett. 2021, 6, 1333-9.