REFERENCES
1. Yuan, Z.; Zhu, X.; Jiang, Z. Recent advances of constructing metal/semiconductor catalysts designing for photocatalytic CO2 hydrogenation. Molecules 2023, 28, 5693.
2. Ulukardesler, A. H. Biodiesel production from waste cooking oil using different types of catalysts. Processes 2023, 11, 2035.
3. Caglar, A. E.; Daştan, M.; Avci, S. B.; Ahmed, Z.; Gönenç, S. Modeling the influence of mineral rents and low-carbon energy on environmental quality: new insights from a sustainability perspective. Nat. Resour. Forum. 2024, 48, 1456-76.
4. Ju, Y.; Nie, X.; Zhu, Y.; Xie, H. In situ fluidized mining and conversion solution to alleviate geological damage and greenhouse gas emissions due to coal exploitation: a numerical analysis and evaluation. Energy. Sci. . Eng. 2021, 9, 40-57.
5. Gitelman, L.; Magaril, E.; Kozhevnikov, M. Energy security: new threats and solutions. Energies 2023, 16, 2869.
6. Fajardy, M.; Mac, D. N. The energy return on investment of BECCS: is BECCS a threat to energy security? Energy. Environ. Sci. 2018, 11, 1581-94.
7. Leonzio, G.; Chachuat, B.; Shah, N. Towards ethylene production from carbon dioxide: economic and global warming potential assessment. Sustain. Prod. Consump. 2023, 43, 124-39.
8. Li, Y.; Zhu, F.; Liu, E.; et al. Carbon dioxide capture and green conversion to clean energy against global warming. Adv. Compos. Hybrid. Mater. 2024, 7, 955.
9. Tang, J.; Ni, H.; Peng, R.; Wang, N.; Zuo, L. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power. Sources. 2023, 562, 232785.
10. Mondal, S.; Mondal, A.; Rathore, J.; Koundinya, K. K.; Sharma, A. K. India's shift toward sustainable energy: a comprehensive approach to renewable energy integration and environmental sustainability. J. Renew. Sustain. Ener. 2024, 16, 042701.
11. Ye, Z.; Zheng, R.; Li, S.; et al. A review: recent advances of piezoelectric photocatalysis in the environmental fields. Nanomaterials. (Basel). 2024, 14, 1641.
12. Li, C. F.; Pan, W. G.; Zhang, Z. R.; Wu, T.; Guo, R. T. Recent progress of single-atom photocatalysts applied in energy conversion and environmental protection. Small 2023, 19, e2300460.
13. Chengli, Z.; Ronghua, M.; Qi, W.; Mingrui, Y.; Rui, C.; Xiaonan, Z. Photocatalytic degradation of organic pollutants in wastewater by heteropolyacids: a review. J. Coord. Chem. 2021, 74, 1751-64.
14. Dong, S.; Gong, Y.; Zeng, Z.; et al. Dissolved organic matter promotes photocatalytic degradation of refractory organic pollutants in water by forming hydrogen bonding with photocatalyst. Water. Res. 2023, 242, 120297.
15. Li, T.; Wang, P.; He, M.; Zhang, T.; Yang, C.; Li, Z. Metal-organic frameworks for photocatalytical carbon dioxide reduction reaction. Coord. Chem. Rev. 2024, 521, 216179.
16. Kandy M, Rajeev K A, Sankaralingam M. Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide. Sustain. Energy. Fuels. 2021, 5, 12-33.
17. Ekspong, J.; Larsen, C.; Stenberg, J.; et al. Solar-driven water splitting at 13.8% solar-to-hydrogen efficiency by an earth-abundant electrolyzer. ACS. Sustain. Chem. Eng. 2021, 9, 14070-8.
18. Li, R.; Luan, J.; Zhang, Y.; et al. A review of efficient photocatalytic water splitting for hydrogen production. Renew. Sustain. Energy. Rev. 2024, 206, 114863.
19. Yuan, L.; Han, C.; Yang, M.; Xu, Y. Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int. Rev. Phys. Chem. 2016, 35, 1-36.
20. Madkour, M.; Al Sagheer, F. Au/ZnS and Ag/ZnS nanoheterostructures as regenerated nanophotocatalysts for photocatalytic degradation of organic dyes. Opt. Mater. Express. 2017, 7, 158.
21. Chankhanittha, T.; Watcharakitti, J.; Piyavarakorn, V.; et al. ZnO/ZnS photocatalyst from thermal treatment of ZnS: influence of calcination temperature on development of heterojunction structure and photocatalytic performance. J. Phys. Chem. Solids. 2023, 179, 111393.
22. Zhang, K.; Xu, Y.; Liu, F.; Yan, G.; Guo, S. Preparation and properties of ZnS-CdSe@Co/N-C core/shell composites for visible light photoconversion of CO2. New. J. Chem. 2023, 47, 12550-3.
23. Azarang, M.; Sookhakian, M.; Aliahmad, M.; et al. Nitrogen-doped graphene-supported zinc sulfide nanorods as efficient Pt-free for visible-light photocatalytic hydrogen production. Int. J. of. Hydrog. Energy. 2018, 43, 14905-14.
24. Xiong, J.; Wang, X.; Wu, J.; Han, J.; Lan, Z.; Fan, J. In situ fabrication of n-doped Zns/Zno composition for enhanced visible-light photocatalytic H2 evolution activity. Molecules 2022, 27, 8544.
25. Xu, L.; Meng, J.; Wang, J.; Wang, L.; Li, Q. Hybrid density functional study on band structure engineering of ZnS(110) surface by anion-cation codoping for overall water splitting. New. J. Chem. 2022, 46, 8079-87.
26. Tie, L.; Sun, R.; Jiang, H.; et al. Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production. J. Alloys. Compd. 2019, 807, 151670.
27. Wu, P.; Liu, H.; Xie, Z.; et al. Excellent charge separation of NCQDs/ZnS nanocomposites for the promotion of photocatalytic H2 evolution. ACS. Appl. Mater. Interfaces. 2024, 16, 16601-11.
28. Khan, M. M.; Abdulwahab, K. O. Metals- and non-metals-doped ZnS for various photocatalytic applications. Mater. Sci. Semicond. Process. 2024, 181, 108634.
29. Mani, A. D.; Ghosal, P.; Subrahmanyam, C. Novel synthesis of C, N doped rice grain shaped ZnS nanomaterials - towards enhanced visible light photocatalytic activity for aqueous pollutant removal and H2 production. RSC. Adv. 2014, 4, 23292-8.
30. Peng, H.; Liu, D.; Zheng, X.; Fu, X. N-doped Carbon-coated ZnS with sulfur-vacancy defect for enhanced photocatalytic activity in the visible light region. Nanomaterials. (Basel). 2019, 9, 1657.
31. Dharmaraja, C.; Nicholas, P. E.; Ramya, P.; Premkumar, I. I.; Vijayan, V.; Senthilkumar, N. Investigation on photocatalytic activity of ZnS/NiFe2O4 NCs under sunlight irradiation via a novel two-step synthesis approach. Inorg. Chem. Commun. 2021, 126, 108481.
32. Jobzari, H.; Iranmanesh, P.; Sabet, M.; Saeednia, S. Effect of synthesis method and chemical reagents on the structural parameters, particle size, and optical and photoluminescence properties of ZnS nanostructures. Luminescence 2019, 34, 689-98.
33. Lange, T.; Reichenberger, S.; Ristig, S.; et al. Zinc sulfide for photocatalysis: white angel or black sheep? Prog. Mater. Sci. 2022, 124, 100865.
34. Stefan, M.; Toloman, D.; Popa, A.; et al. Interface charge transfer process in ZnO:Mn/ZnS nanocomposites. J. Nanopart. Res. 2016, 18, 3369.
35. Suganthi, N.; Pushpanathan, K. Photocatalytic degradation and antimicrobial activity of transition metal doped mesoporous ZnS nanoparticles. Int. J. Environ. Sci. Technol. 2019, 16, 3375-88.
36. Wang, W.; Lee, G.; Wang, P.; Qiao, Z.; Liu, N.; Wu, J. J. Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process. Sep. Purif. Technol. 2020, 237, 116469.
37. Starukh, H.; Praus, P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis. Catalysts 2020, 10, 1119.
38. Talukdar, S.; Dutta, R. K. A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles. RSC. Adv. 2016, 6, 928-36.
39. Shao, Y.; Jiang, Z.; Zhang, Q.; Guan, J. Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction. ChemSusChem 2019, 12, 2133-46.
40. Li, Z.; Lu, X.; Teng, J.; Zhou, Y.; Zhuang, W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis. Nanoscale 2021, 13, 11314-24.
41. Wang, Y.; Chen, Y.; Barakat, T.; et al. Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. J. Energy. Chem. 2022, 66, 529-59.
42. Zou, M.; Feng, L.; Ganeshraja, A. S.; Xiong, F.; Yang, M. Defect induced nickel, nitrogen-codoped mesoporous TiO2 microspheres with enhanced visible light photocatalytic activity. Solid. State. Sci. 2016, 60, 1-10.
43. Wu, Y.; Zhuang, Z.; Chen, C.; Li, J.; Xiao, F.; Chen, C. Atomic-level regulation strategies of single-atom catalysts: nonmetal heteroatom doping and polymetallic active site construction. Chem. Catal. 2023, 3, 100586.
44. Khan, S.; Je, M.; Ton, N. N. T.; et al. C-doped ZnS-ZnO/Rh nanosheets as multijunctioned photocatalysts for effective H2 generation from pure water under solar simulating light. Appl. Catal. B. Environ. 2021, 297, 120473.
45. Muruganandham, M.; Kusumoto, Y. Synthesis of N, C Codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst. J. Phys. Chem. C. 2009, 113, 16144-50.
46. Riazian, M. Enhancement of the photocatalytic activity of fabricated ZnS nanoparticles in the photodegradation of methylene blue. Phys. Scr. 2023, 98, 065956.
47. Al-Kahtani, A. A.; Alshehri, S. M.; Naushad, M.; Ruksana; Ahamad, T. Fabrication of highly porous N/S doped carbon embedded with ZnS as highly efficient photocatalyst for degradation of bisphenol. Int. J. Biol. Macromol. 2019, 121, 415-23.
48. Zhu, B.; Zhou, J.; Ni, L.; Diao, G. Synthesis and characterization of P-doped g-C3N4 nanosheet hybridized ZnS nanospheres with enhanced visible-light photocatalytic activity. J. Solid. State. Chem. 2022, 305, 122703.
49. Wan, H.; Xu, L.; Huang, W.; et al. Band engineering of ZnS by codoping for visible-light photocatalysis. Appl. Phys. A. 2014, 116, 741-50.
50. Bao, L.; Dai, C.; Liu, C.; et al. Fluorine lattice-doped ZnS with accompanying sulfur vacancies for high activity and selectivity of CO2 conversion to CO. Ceram. Int. 24, 50, 19769-80.
51. Abid, N.; Khan, A. M.; Shujait, S.; et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv. Colloid. Interface. Sci. 2022, 300, 102597.
52. Tairi, L.; Messai, Y.; Bourzami, R.; et al. Enhanced photoluminescence and photocatalytic activity of Ca2+ addition into ZnS nanoparticles synthesized by hydrothermal method. Physica. B:. Condensed. Matter. 2022, 631, 413713.
53. Samanta, D.; Basnet, P.; Jha, S.; Chatterjee, S. Proficient route in synthesis of glucose stabilized Ag modified ZnS nanospheres for mechanistic understandings of commercially used dyes degradation. Inorg. Chem. Commun. 2022, 141, 109498.
54. Poornaprakash, B.; Chalapathi, U.; Kumar, M.; et al. Tailoring the optical, magnetic, and photocatalytic properties of ZnS quantum dots by rare-earth ion doping. Chemical. Physics. Letters. 2020, 753, 137609.
55. Poornaprakash, B.; Chalapathi, U.; Suh, Y.; Vattikuti, S. P.; Reddy, M. S. P.; Park, S. Terbium-doped ZnS quantum dots: structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceramics. International. 2018, 44, 11724-9.
56. Li, S. Hydrothermal synthesis of Cu-doped ZnS for enhanced photocatalytic degradation of tetracycline under the visible light. IOP. Conf. Ser:. Earth. Environ. Sci. 2021, 769, 022053.
57. Dake, D. V.; Raskar, N. D.; Mane, V. A.; et al. Exploring the role of defects on diverse properties of Cr-substituted ZnS nanostructures for photocatalytic applications. Appl. Phys. A. 2020, 126, 3669.
58. Dake, D. V.; Raskar, N. D.; Mane, V. A.; et al. Intriguing physicochemical properties and impact of co-dopants on N-doped graphene oxide based ZnS nanowires for photocatalytic application. Sci. Rep. 2023, 13, 7595.
59. Zhao, W.; Wei, Z.; Wu, X.; Zhang, X.; Zhang, L.; Wang, X. Microstructure and photocatalytic activity of Ni-doped ZnS nanorods prepared by hydrothermal method. Trans. Nonferrous. Met. Soc. China. 2019, 29, 157-64.
60. Wang, R.; Liang, H.; Hong, J.; Wang, Z. Hydrothermal synthesis of cobalt-doped ZnS for efficient photodegradation of methylene blue. J. Photoch. Photobio. A. 2016, 325, 62-7.
61. Bui, H. V.; Thai, D. V.; Nguyen, T. D.; et al. Mn-doped ZnS nanoparticle photoanodes: synthesis, structural, optical, and photoelectrochemical characteristics. Mater. Chem. Phys. 2023, 307, 128081.
62. Govindasamy, K.; Senthilkumar, S. Green synthesis of Mn-doped ZnO nanoparticles using ipomoea staphylina leaf extract: characterization and application of photocatalytic dye degradation, antibacterial and antioxidant activity. Chemistryselect 2024, 9, e202402347.
63. Sharma, J.; Gupta, A.; Pandey, O. Effect of Zr doping and aging on optical and photocatalytic properties of ZnS nanopowder. Ceram. Int. 2019, 45, 13671-8.
64. Sonkar, R.; Mondal, N. J.; Thakur, S.; Saikia, E.; Ghosh, M. P.; Chowdhury, D. Cobalt-substituted ZnS QDs: a diluted magnetic semiconductor and efficient photocatalyst. Nanoscale. Adv. 2023, 5, 7042-56.
65. Suganthi, N.; Pushpanathan, K. Photocatalytic degradation and ferromagnetism in mesoporous La doped ZnS nanoparticles. J. Mater. Sci:. Mater. Electron. 2018, 29, 13970-83.
66. Yaemphutchong, S.; Wattanathana, W.; Deeloed, W.; et al. Characterization, luminescence and dye adsorption study of manganese and samarium doped and co-doped zinc sulfide phosphors. Opt. Mater. 2020, 107, 109965.
67. Amani-Ghadim, A. R.; Arefi-Oskoui, S.; Mahmoudi, R.; et al. Improving photocatalytic activity of the ZnS QDs via lanthanide doping and photosensitizing with GO and g-C3N4 for degradation of an azo dye and bisphenol-A under visible light irradiation. Chemosphere 2022, 295, 133917.
68. Khaparde, R.; Acharya, S. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2016, 163, 49-57.
69. Labiadh, H.; Chaabane, T. B.; Balan, L.; et al. Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with high photocatalytic activity. Appl. Catal. B:. Environ. 2014, 144, 29-35.
70. Latief, U.; Islam, S. U.; Khan, Z.; Shahid, K. M. Luminescent Manganese/Europium doped ZnS quantum dots: Tunable emission and their application as fluorescent sensor. J. Alloys. and. Compd. 2022, 910, 164889.
71. Madkour, M.; Ali, A. A.; Sagheer, F. A.; Nazeer, A. A. Solar active Cu2+-ZnS photocatalyst for efficient photodegradation of 4-chlorophenol: effective cation doping effect. Catal. Today. 2021, 379, 7-14.
72. Ramki, K.; Rajapriya, A.; Sakthivel, P.; Murugadoss, G.; Thangamuthu, R.; Rajesh, K. M. Rapid degradation of organic dyes under sunlight using tin-doped ZnS nanoparticles. J. Mater. Sci:. Mater. Electron. 2020, 31, 8750-60.
73. Sharath, D.; Gaikwad, A.; Choudhury, S.; Gupta, N.; Sasikala, R.; Betty, C. Effect of Indium doping on the photoelectrochemical and photocatalytic properties of zinc sulphide. Mater. Sci. Eng:. B. 2017, 226, 57-63.
74. Shah, U.; Jan, F. A.; Ullah, R.; Wajidullah; Salman; Ullah, N. Tin decorated zinc sulphide nanoparticles for photocatalytic degradation of bromophenol blue dye and their therapeutic applications: a kinetic and thermodynamic approach. ECS. J. Solid. State. Sci. Technol. 2022, 11, 033011.
75. Kannan, S.; Subiramaniyam, N.; Sathishkumar, M. Effect of annealing temperature and Mn doping on the structural and optical properties of ZnS thin films for enhanced photocatalytic degradation under visible light irradiation. Inorg. Chem. Commun. 2020, 119, 108068.
76. Khan, J. A.; Ahamad, S.; Ansari, M. A. H.; et al. State-of-the-art in ZnS-based nanoarchitects for visible-light photocatalytic degradation of antibiotics and organic dyes. J. Water. Process. Eng. 2024, 67, 106151.
77. Zhou, Y.; Chen, G.; Yu, Y.; et al. An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS. Phys. Chem. Chem. Phys. 2015, 17, 1870-6.
78. Moon, H.; Goh, M. S.; Cha, M.; et al. Explosive hydrogen evolution from water splitting without sacrificial agent from the C, N co-doped Zn defective ZnS particle. Appl. Surf. Sci. 2022, 606, 154787.
79. Moon, H.; Kim, S.; Joo, S. W.; et al. Design and selective photocatalytic activity of highly concentrated C, N, O co-doped Zn, S co-defective ZnS particles mediated by ethylenediamine derivatives. Nano. Today. 2023, 49, 101785.
80. Kouser, S.; Lingampalli, S. R.; Chithaiah, P.; et al. Extraordinary changes in the electronic structure and properties of CdS and ZnS by anionic substitution: cosubstitution of P and Cl in place of S. Angew. Chem. Int. Ed. Engl. 2015, 54, 8149-53.
81. Wang, C.; You, C.; Rong, K.; Shen, C.; Yang, F.; Li, S. An S-Scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta. Physico-Chimica. Sinica. 2024, 40, 2307045.
82. Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Integration of plasmonic effect and S-scheme heterojunction into
83. Li, S.; Rong, K.; Wang, X.; Shen, C.; Yang, F.; Zhang, Q. Design of carbon quantum dots/CdS/Ta3N5 S-scheme heterojunction nanofibers for efficient photocatalytic antibiotic removal. Acta. Physico-Chimica. Sinica. 2024, 40, 2403005.
84. Kanakaraju, D.; Chandrasekaran, A. Recent advances in TiO2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants. Sci. Total. Environ. 2023, 868, 161525.
85. Krishna, A. M. S.; Ramasubramanian, B.; Haseena, S.; et al. Functionalized graphene-incorporated cupric oxide charge-transport layer for enhanced photoelectrochemical performance and hydrogen evolution. Catalysts 2023, 13, 785.
86. Li, C.; Zhang, J.; Chen, X.; Tao, H.; Zhou, Y.; Zhu, M. Upgraded charge transfer by an internal electric field in 2D/2D BiOCl/N-rich C3N5 heterojunctions for efficiently visible-light catalytic NO removal. Chem. Eng. J. 2023, 468, 143753.
87. Li, S.; You, C.; Xue, Q.; et al. Carbon quantum dots and interfacial chemical bond synergistically modulated S-scheme Mn0.5Cd0.5S/BiOBr photocatalyst for efficient water purification. J. Mater. Sci. Technol. 2025, 214, 255-65.
88. Zhang, J.; Yu, G.; Yang, C.; Li, S. Recent progress on S-scheme heterojunction strategy enabling polymer carbon nitrides C3N4 and
89. Tom, E.; Velluva, A.; Joseph, A.; et al. Tailoring the electrochemical properties of ZnS electrodes via cobalt doping for improved supercapacitor application. J. Electron. Mater. 2025, 54, 451-61.
90. Bailón-ruiz, S. J.; Cedeño-mattei, Y.; Núñez-colón, A. M.; Torres-torres, K. Fast One-step microwave-assisted synthesis of iron-doped ZnS for photocatalytic applications. Crystals 2024, 14, 699.
91. Hussain, I.; Mohapatra, D.; Dhakal, G.; et al. Different controlled nanostructures of Mn-doped ZnS for high-performance supercapacitor applications. J. Energy. Storage. 2020, 32, 101767.