REFERENCES

1. Sun, C.; Alonso, J. A.; Bian, J. Recent Advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy. Mater. 2021, 11, 2000459.

2. Luo, D.; Li, X.; Dumont, A.; Yu, H.; Lu, Z. H. Recent progress on perovskite surfaces and interfaces in optoelectronic devices. Adv. Mater. 2021, 33, e2006004.

3. Bui, T. H.; Shin, J. H. Perovskite materials for sensing applications: recent advances and challenges. Microchem. J. 2023, 191, 108924.

4. Liu, Y.; Palotas, K.; Yuan, X.; et al. Atomistic origins of surface defects in CH3NH3PbBr3 perovskite and their electronic structures. ACS. Nano. 2017, 11, 2060-5.

5. Xian, J.; Jiang, H.; Wu, Z.; et al. Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution. J. Energy. Chem. 2024, 88, 232-41.

6. Shin, S. S.; Lee, S. J.; Seok, S. I. Metal oxide charge transport layers for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2019, 29, 1900455.

7. Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751-6.

8. Sun, Q.; Yin, W. J. Thermodynamic stability trend of cubic perovskites. J. Am. Chem. Soc. 2017, 139, 14905-8.

9. Zhang, F.; Park, S. Y.; Yao, C.; et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 2022, 375, 71-6.

10. Buin, A.; Comin, R.; Xu, J.; Ip, A. H.; Sargent, E. H. Halide-dependent electronic structure of organolead perovskite materials. Chem. Mater. 2015, 27, 4405-12.

11. Liu, G.; Gong, J.; Kong, L.; et al. Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 8076-81.

12. Mai, H.; Chen, D.; Tachibana, Y.; Suzuki, H.; Abe, R.; Caruso, R. A. Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chem. Soc. Rev. 2021, 50, 13692-729.

13. Deng, Z.; Ni, D.; Chen, D.; et al. Anti-perovskite materials for energy storage batteries. InfoMat 2022, 4, e12252.

14. Jonderian, A.; Ting, M.; Mccalla, E. Metastability in Li-La-Ti-O perovskite materials and its impact on ionic conductivity. Chem. Mater. 2021, 33, 4792-804.

15. Fu, Y.; Rea, M. T.; Chen, J.; et al. Selective Stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 2017, 29, 8385-94.

16. Fan, M.; Guo, J.; Fang, G.; et al. Microwave-pulse assisted synthesis of tunable ternary-doped 2D molybdenum carbide for efficient hydrogen evolution. Chem. Synth. 2024, 4, 36.

17. Shi, Y.; Zhou, Y.; Ma, Z.; Xiao, G.; Wang, K.; Zou, B. Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure. J. Mater. Chem. C. 2020, 8, 12755-67.

18. Wu, Z.; Fan, M.; Jiang, H.; et al. Harnessing the unconventional cubic phase in 2D LaNiO3 perovskite for highly efficient urea oxidation. Angew. Chem. Int. Ed. Engl. 2025, 64, e202413932.

19. El-Ballouli, A. O.; Bakr, O. M.; Mohammed, O. F. Structurally tunable two-dimensional layered perovskites: from confinement and enhanced charge transport to prolonged hot carrier cooling dynamics. J. Phys. Chem. Lett. 2020, 11, 5705-18.

20. Sun, W.; Dacek, S. T.; Ong, S. P.; et al. The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2016, 2, e1600225.

21. Wu, Z.; Xian, J.; Dai, J.; et al. Microwave-pulse synthesis of tunable 2D porous nickel-enriched LaMnxNi1-xO3 solid solution for efficient electrocatalytic urea oxidation. J. Mater. Chem. A. 2024, 12, 7047-57.

22. Hong, Y.; Byeon, P.; Bak, J.; et al. Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden-Popper phases. Nat. Commun. 2021, 12, 5527.

23. Marronnier, A.; Roma, G.; Boyer-Richard, S.; et al. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS. Nano. 2018, 12, 3477-86.

24. Ning, M.; Wang, S.; Wan, J.; et al. Dynamic active sites in electrocatalysis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202415794.

25. Ji, R.; Zhang, Z.; Hofstetter, Y. J.; et al. Perovskite phase heterojunction solar cells. Nat. Energy. 2022, 7, 1170-9.

26. Jin, H.; Song, T.; Paik, U.; Qiao, S. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc. Mater. Res. 2021, 2, 559-73.

27. Jiang, H.; Li, J.; Xiao, Z.; et al. The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions. Nanoscale 2020, 12, 16245-52.

28. Ofoegbuna, T.; Peterson, B.; da, S. M. N.; et al. Modifying metastable Sr1-xBO3-δ (B = Nb, Ta, and Mo) perovskites for electrode materials. ACS. Appl. Mater. Interfaces. 2021, 13, 29788-97.

29. Yongfei, Y.; Guangyu, F.; Miao, F.; et al. Leveraging novel microwave techniques for tailoring the microstructure of energy storage materials. Microstructures , 4, 2024035.

30. Wan, J.; Wu, Z.; Fang, G.; et al. Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo2O4 spinel. J. Energy. Chem. 2024, 91, 226-35.

31. Li, B.; Zhang, Y.; Fu, L.; et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 2018, 9, 1076.

32. Wan, J.; Fang, G.; Mi, S.; et al. Metastable 2D amorphous Nb2O5 for aqueous supercapacitor energy storage. Chem. Eng. J. 2024, 488, 150912.

33. Wan, J.; Hu, R.; Li, J.; et al. A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor. Carbohydr. Polym. 2022, 284, 119230.

34. Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693.

35. Yao, H.; Zhao, J.; Li, Z.; Ci, Z.; Jin, Z. Research and progress of black metastable phase CsPbI3 solar cells. Mater. Chem. Front. 2021, 5, 1221-35.

36. Li, Q.; Fang, G.; Wu, Z.; et al. Advanced microwave strategies facilitate structural engineering for efficient electrocatalysis. ChemSusChem 2024, 17, e202301874.

37. Hu, R.; Jiang, H.; Xian, J.; et al. Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution. Appl. Catal. B-. Environ. 2022, 317, 121728.

38. Barone, C.; Lang, F.; Mauro, C.; et al. Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Sci. Rep. 2016, 6, 34675.

39. Varignon, J.; Bibes, M.; Zunger, A. Origin of band gaps in 3D perovskite oxides. Nat. Commun. 2019, 10, 1658.

40. Gao, B.; Liu, H.; Zhou, Z.; et al. An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites. Microstructures 2022, 2, 2022010.

41. Halder, S.; Sheikh, M. S.; Maity, R.; Ghosh, B.; Sinha, T. Investigating the optical, photosensitivity and photocatalytic properties of double perovskites A2LuTaO6 (A = Ba, Sr): a combined experimental and density functional theory study. Ceram. Int. 2019, 45, 15496-504.

42. Basavarajappa, M. G.; Chakraborty, S. Rationalization of double perovskite oxides as energy materials: a theoretical insight from electronic and optical properties. ACS. Mater. Au. 2022, 2, 655-64.

43. He, R.; Wu, H.; Liu, S.; Liu, H.; Zhong, Z. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B. 2021, 104.

44. Liu, L.; Tang, Y.; Liu, S.; et al. Unraveling the trade-off between oxygen vacancy concentration and ordering of perovskite oxides for efficient lattice oxygen evolution. Adv. Energy. Mater. 2025, 15, 2402967.

45. Navrotsky, A. Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem. Mater. 1998, 10, 2787-93.

46. Ciccioli, A.; Latini, A. Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. J. Phys. Chem. Lett. 2018, 9, 3756-65.

47. Fransson, E.; Rahm, J. M.; Wiktor, J.; Erhart, P. Revealing the free energy landscape of halide perovskites: metastability and transition characters in CsPbBr3 and MAPbI3. Chem. Mater. 2023, 35, 8229-38.

48. Lopes, P. P.; Chung, D. Y.; Rui, X.; et al. Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 2021, 143, 2741-50.

49. Lyu, H.; Su, H.; Lin, Z. Two-stage dynamic transformation from δ- to α-CsPbI3. J. Phys. Chem. Lett. 2024, 15, 2228-32.

50. Makovec, D.; Križaj, N.; Meden, A.; et al. Ferroelectric bismuth-titanate nanoplatelets and nanowires with a new crystal structure. Nanoscale 2022, 14, 3537-44.

51. Kim, H. J.; Kim, S. H.; Kim, S.; et al. Low-temperature crystallization of LaFeO3 perovskite with inherent catalytically surface for the enhanced oxygen evolution reaction. Nano. Energy. 2023, 105, 108003.

52. O’Donnell, S.; Kremer, R. K.; Maggard, P. A. Metastability and photoelectrochemical properties of Cu2SnO3 and Cu2-xLixTiO3: two Cu(I)-based oxides with delafossite structures. Chem. Mater. 2023, 35, 1404-16.

53. Wang, Y.; Baldassarri, B.; Shen, J.; He, J.; Wolverton, C. Landscape of thermodynamic stabilities of A2BB’O6 compounds. Chem. Mater. 2024, 36, 6816-30.

54. Yu, H.; Wan, J.; Goodsite, M.; Jin, H. Advancing direct seawater electrocatalysis for green and affordable hydrogen. One. Earth. 2023, 6, 267-77.

55. Datta, K.; Neder, R. B.; Chen, J.; Neuefeind, J. C.; Mihailova, B. Atomic-level structural correlations across the morphotropic phase boundary of a ferroelectric solid solution: xBiMg1/2Ti1/2O3-(1 - x)PbTiO3. Sci. Rep. 2017, 7, 471.

56. Zhang, H.; Bi, Z.; Zhai, Z.; et al. Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskite thin films. Adv. Funct. Mater. 2024, 34, 2302214.

57. Asl H, Manthiram A. Proton-induced disproportionation of jahn-teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 2020, 142, 21122-30.

58. Klein, J.; Kampermann, L.; Mockenhaupt, B.; Behrens, M.; Strunk, J.; Bacher, G. Limitations of the tauc plot method. Adv. Funct. Mater. 2023, 33, 2304523.

59. Nova, T. F.; Disa, A. S.; Fechner, M.; Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 2019, 364, 1075-9.

60. Li, X.; Qiu, T.; Zhang, J.; et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 2019, 364, 1079-82.

61. Kim, J. R.; Jang, J.; Go, K. J.; et al. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat. Commun. 2020, 11, 4944.

62. Kawamoto, T.; Fujita, K.; Yamada, I.; et al. Room-temperature polar ferromagnet ScFeO3 transformed from a high-pressure orthorhombic perovskite phase. J. Am. Chem. Soc. 2014, 136, 15291-9.

63. Zhang, X.; Pei, C.; Chang, X.; et al. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J. Am. Chem. Soc. 2020, 142, 11540-9.

64. Gabilondo, E. A.; Newell, R. J.; Broughton, R.; et al. Switching lead for tin in PbHfO3: noncubic structure of SnHfO3. Angew. Chem. Int. Ed. Engl. 2024, 63, e202312130.

65. Zhao, M.; Zhou, X.; Han, Y.; et al. Metastable γ-Li2TiTeO6: negative chemical pressure interception and polymorph tuning of SHG. Chem. Mater. 2022, 34, 10153-61.

66. Zhao, M.; Zhu, C.; Sun, Z.; et al. Methodological approach to the high-pressure synthesis of nonmagnetic Li2B4+B6+O6 oxides. Chem. Mater. 2022, 34, 186-96.

67. Schlom, D. G.; Chen, L.; Pan, X.; Schmehl, A.; Zurbuchen, M. A. A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 2008, 91, 2429-54.

68. O’donnell, S.; Chung, C.; Carbone, A.; Broughton, R.; Jones, J. L.; Maggard, P. A. Pushing the limits of metastability in semiconducting perovskite oxides for visible-light-driven water oxidation. Chem. Mater. 2020, 32, 3054-64.

69. Dastidar, S.; Hawley, C. J.; Dillon, A. D.; Gutierrez-Perez, A. D.; Spanier, J. E.; Fafarman, A. T. Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide. J. Phys. Chem. Lett. 2017, 8, 1278-82.

70. Gao, R.; Dong, Y.; Xu, H.; et al. Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3. ACS. Appl. Mater. Interfaces. 2016, 8, 14871-8.

71. Anderson, T. J.; Ryu, S.; Zhou, H.; et al. Metastable honeycomb SrTiO3/SrIrO3 heterostructures. Appl. Phys. Lett. 2016, 108, 151604.

72. Jiang, Z.; Zhang, J.; Song, D.; et al. Metastable SrRuO3 phases with lattice-dependent magnetic anisotropy by tailoring interfacial oxygen octahedral coupling. Ceram. Int. 2022, 48, 16825-31.

73. Jaffe, A.; Mack, S. A.; Lin, Y.; Mao, W. L.; Neaton, J. B.; Karunadasa, H. I. High compression-induced conductivity in a layered Cu-Br perovskite. Angew. Chem. Int. Ed. Engl. 2020, 59, 4017-22.

74. Ming, W.; Yang, D.; Li, T.; Zhang, L.; Du, M. H. Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode. Adv. Sci. (Weinh). 2018, 5, 1700662.

75. Shi, Y.; Chen, C.; Lou, Y.; Wang, Z. Strategies of perovskite mechanical stability for flexible photovoltaics. Mater. Chem. Front. 2021, 5, 7467-78.

76. Zhou, G.; Jiang, X.; Zhao, J.; et al. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence. ACS. Appl. Mater. Interfaces. 2018, 10, 24648-55.

77. Pravarthana, D.; Lebedev, O. I.; David, A.; et al. Metastable monoclinic [110] layered perovskite Dy2Ti2O7 thin films for ferroelectric applications. RSC. Adv. 2019, 9, 19895-904.

78. Shao, Z.; Saitzek, S.; Roussel, P.; Desfeux, R. Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the sol-gel route. J. Mater. Chem. 2012, 22, 24894.

79. Shao, Z.; Saitzek, S.; Ferri, A.; et al. Evidence of ferroelectricity in metastable Sm2Ti2O7 thin film. J. Mater. Chem. 2012, 22, 9806.

80. Katsumata, T.; Yamamoto, H.; Kimura, Y.; et al. Development of electrochemical anion doping technique for expansion of functional material exploration. Adv. Funct. Materials. 2023, 33, 2307116.

81. Liu, R.; Si, L.; Niu, W.; et al. Light-induced mott-insulator-to-metal phase transition in ultrathin intermediate-spin ferromagnetic perovskite ruthenates. Adv. Mater. 2023, 35, e2211612.

82. Waidha, A. I.; Zhang, H.; Lepple, M.; et al. BaCoO2+δ: a new highly oxygen deficient perovskite-related phase with unusual Co coordination obtained by high temperature reaction with short reaction times. Chem. Commun. (Camb). 2019, 55, 2920-3.

83. Stoica, V. A.; Yang, T.; Das, S.; et al. Non-equilibrium pathways to emergent polar supertextures. Nat. Mater. 2024, 23, 1394-401.

84. Kim, H.; Park, N. Importance of tailoring lattice strain in halide perovskite crystals. NPG. Asia. Mater. 2020, 12, 265.

85. Jin, B.; Cao, J.; Yuan, R.; Cai, B.; Wu, C.; Zheng, X. Strain relaxation for perovskite lattice reconfiguration. Adv. Energ. Sust. Res. 2023, 4, 2200143.

86. Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on sol-gel synthesis of perovskite and oxide nanomaterials. Gels 2021, 7, 275.

87. Lei, Y.; Xu, T.; Ye, S.; et al. Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Appl. Catal. B-Environ. 2021, 285, 119809.

88. Zheng, L.; Nozariasbmarz, A.; Hou, Y.; et al. A universal all-solid synthesis for high throughput production of halide perovskite. Nat. Commun. 2022, 13, 7399.

89. Zeng, Y.; Szymanski, N. J.; He, T.; et al. Selective formation of metastable polymorphs in solid-state synthesis. Sci. Adv. 2024, 10, eadj5431.

90. Mueller, D. N.; De, S. R. A.; Yoo, H.; Martin, M. Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba,Sr)(Co,Fe)O3-δ. Chem. Mater. 2012, 24, 269-74.

91. Falmbigl, M.; Karateev, I. A.; Golovina, I. S.; et al. Evidence of extended cation solubility in atomic layer deposited nanocrystalline BaTiO3 thin films and its strong impact on the electrical properties. Nanoscale 2018, 10, 12515-25.

92. Yamazoe, S.; Kawawaki, T.; Shibata, K.; Kato, K.; Wada, T. Synthetic mechanism of perovskite-type KNbO3 by modified solid-state reaction process. Chem. Mater. 2011, 23, 4498-504.

93. Usiskin, R. E.; Davenport, T. C.; Wang, R. Y.; Guan, W.; Haile, S. M. Bulk properties of the oxygen reduction catalyst SrCo0.9Nb0.1O3-δ. Chem. Mater. 2016, 28, 2599-608.

94. Uusi-esko, K.; Karppinen, M. Extensive series of hexagonal and orthorhombic RMnO3 (R = Y, La, Sm, Tb, Yb, Lu) thin films by atomic layer deposition. Chem. Mater. 2011, 23, 1835-40.

95. Bora, T.; Al-hinai, M. H.; Al-hinai, A. T.; Dutta, J.; Jantzen, C. M. Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent raman spectroscopy. J. Am. Ceram. Soc. 2015, 98, 4044-9.

96. Xu, F.; Zou, Y.; Dai, Y.; Li, M.; Li, Z. Halide perovskites and high-pressure technologies: a fruitful encounter. Mater. Chem. Front. 2023, 7, 2102-19.

97. Yamada, I.; Odake, T.; Asai, K.; et al. High-pressure synthesis of highly oxidized Ba0.5Sr0.5Co0.8Fe0.2O3-δ cubic perovskite. Mater. Chem. Front. 2019, 3, 1209-17.

98. Ishiwata, S.; Tokunaga, Y.; Taguchi, Y.; Tokura, Y. High-pressure hydrothermal crystal growth and multiferroic properties of a perovskite YMnO3. J. Am. Chem. Soc. 2011, 133, 13818-20.

99. Inaguma, Y.; Aimi, A.; Shirako, Y.; et al. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect. J. Am. Chem. Soc. 2014, 136, 2748-56.

100. Fujita, K.; Kawamoto, T.; Yamada, I.; et al. LiNbO3-type InFeO3: room-temperature polar magnet without second-order Jahn-Teller active ions. Chem. Mater. 2016, 28, 6644-55.

101. Khalyavin, D. D.; Salak, A. N.; Vyshatko, N. P.; et al. Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3:  Bi-based structural analogue of antiferroelectric PbZrO3. Chem. Mater. 2006, 18, 5104-10.

102. Khalyavin, D. D.; Salak, A. N.; Fertman, E. L.; et al. The phenomenon of conversion polymorphism in Bi-containing metastable perovskites. Chem. Commun. (Camb). 2019, 55, 4683-6.

103. Yan, L.; Niu, H.; Bridges, C. A.; et al. Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition. Angew. Chem. Int. Ed. Engl. 2007, 46, 4539-42.

104. Fan, X.; Lian, J.; Guo, Z.; Lu, H. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (111) substrates. Appl. Surf. Sci. 2005, 239, 176-81.

105. Masood, K. B.; Kumar, P.; Malik, M. A.; Singh, J. A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures. Emergent. Mater. 2021, 4, 737-54.

106. Wu, X.; He, J.; Zhang, M.; et al. Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano. Energy. 2020, 67, 104247.

107. Schraknepper, H.; Bäumer, C.; Dittmann, R.; De, S. R. A. Complex behaviour of vacancy point-defects in SrRuO3 thin films. Phys. Chem. Chem. Phys. 2015, 17, 1060-9.

108. Langenberg, E.; Guzmán, R.; Maurel, L.; et al. Epitaxial stabilization of the perovskite phase in (Sr1-xBax)MnO3 Thin Films. ACS. Appl. Mater. Interfaces. 2015, 7, 23967-77.

109. Zhou, C.; Evans, C.; Dickey, E. C.; Rohrer, G. S.; Salvador, P. A. Epitaxial stabilization and persistent nucleation of the 3C polymorph of Ba0.6Sr0.4MnO3. ACS. Appl. Mater. Interfaces. 2024, 16, 4873-85.

110. Wang, Q.; Gu, Y.; Chen, C.; Qiao, L.; Pan, F.; Song, C. Realizing metastable cobaltite perovskite via proton-induced filling of oxygen vacancy channels. ACS. Appl. Mater. Interfaces. 2023, 15, 1574-82.

111. Chen, J.; Li, Z.; Dong, H.; et al. Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation. Adv. Funct. Mater. 2020, 30, 2000987.

112. Enoch, C. M.; Ingavale, S.; Marbaniang, P.; Patil, I.; Swami, A. Molten salt-directed synthesis of strontium manganese perovskite oxide: an active electrocatalyst for the oxygen reduction reaction and oxygen evolution reaction. J. Mater. Chem. A. 2023, 11, 21780-92.

113. Nikam, A. V.; Prasad, B. L. V.; Kulkarni, A. A. Wet chemical synthesis of metal oxide nanoparticles: a review. Crystengcomm 2018, 20, 5091-107.

114. Muñoz, A.; Casáis, M. T.; Alonso, J. A.; et al. Complex magnetism and magnetic structures of the metastable homno3 perovskite. Inorg. Chem. 2001, 40, 1020-8.

115. Yan, F.; Mi, Z.; Chen, J.; et al. Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials. Phys. Chem. Chem. Phys. 2022, 24, 9333-44.

116. Li, X.; Li, Z.; Yan, F.; et al. Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates. Rare. Met. 2022, 41, 3495-503.

117. O’donnell, S.; Osborn, D. J.; Krishnan, G.; et al. Prediction and kinetic stabilization of Sn(II)-perovskite oxide nanoshells. Chem. Mater. 2022, 34, 8054-64.

118. Liu, L.; Zhang, Q.; Wang, Y.; Yan, Z.; Hou, Z. Li-doped (K,Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method. Advanced. Powder. Technology. 2024, 35, 104580.

119. Börgers, J. M.; De, S. R. A. The surprisingly high activation barrier for oxygen-vacancy migration in oxygen-excess manganite perovskites. Phys. Chem. Chem. Phys. 2020, 22, 14329-39.

120. Lee, S. A.; Ok, J. M.; Lee, J.; et al. Epitaxial stabilization of metastable 3C BaRuO3 thin film with ferromagnetic non-fermi liquid phase. Adv. Elect. Mater. 2021, 7, 2001111.

121. Song, Y. H.; Ge, J.; Mao, L. B.; et al. Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 2022, 8, eabq2321.

122. Ding, J.; Zhu, X. Research progress on quadruple perovskite oxides. J. Mater. Chem. C. 2024, 12, 9510-61.

123. Hu, R.; Wei, L.; Xian, J.; et al. Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst. Acta. Physico-Chimica. Sinica. 2023, 39, 221202.

124. Jiang, H.; Xian, J.; Hu, R.; et al. Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor. Chem. Eng. J. 2023, 455, 140804.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/