REFERENCES
1. Yu, Y.; Kummer, J. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453-75.
2. Alpen, U. V.; Rabenau, A.; Talat, G. H. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 1977, 30, 621-3.
3. Hong, H. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 1978, 13, 117-24.
4. Alpen, U.; Bell, M.; Wichelhaus, W.; Cheung, K.; Dudley, G. Ionic conductivity of Li14Zn(GeO44 (Lisicon). Electrochimica. Acta. 1978, 23, 1395-7.
5. Aono, H.; Imanaka, N.; Adachi, G. High Li+ conducting ceramics. Acc. Chem. Res. 1994, 27, 265-70.
6. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 2007, 46, 7778-81.
7. Inaguma, Y.; Liquan, C.; Itoh, M.; et al. High ionic conductivity in lithium lanthanum titanate. Solid. State. Communications. 1993, 86, 689-93.
8. Wang, B.; Chakoumakos, B.; Sales, B.; Kwak, B.; Bates, J. Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure. J. Solid. State. Chem. 1995, 115, 313-23.
9. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. High lithium ion conducting glass-ceramics in the system Li2S-P2S5. Solid. State. Ionics. 2006, 177, 2721-5.
10. Kato, Y.; Hori, S.; Saito, T.; et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 16030.
11. Kanno, R.; Murayama, M. Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 2001, 148, A742.
12. Luo, W.; Gong, Y.; Zhu, Y.; et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and li-metal anode by a germanium layer. Adv. Mater. 2017, 29.
13. Wang, D.; Zhong, G.; Dolotko, O.; et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J. Mater. Chem. A. 2014, 2, 20271-9.
14. Menzer, G. XX. Die Kristallstruktur der Granate. Z. Kristallogr. Cryst. Mater. 1929, 69, 300-96.
15. Kasper, H. M. Series of rare earth garnets Ln3+3M2Li+3O12 (M = Te, W). Inorg. Chem. 1969, 8, 1000-2.
16. Thangadurai, V.; Kaack, H.; Weppner, W. J. F. Novel fast Lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J. Am. Ceram. Soc. 2003, 86, 437-40.
17. Thangadurai, V.; Weppner, W. Li6 ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater. 2005, 15, 107-12.
18. Murugan, R.; Weppner, W.; Schmid-beurmann, P.; Thangadurai, V. Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12. Mater. Sci. Eng:. B. 2007, 143, 14-20.
19. O’callaghan, M. P.; Lynham, D. R.; Cussen, E. J.; Chen, G. Z. Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm-Lu). Chem. Mater. 2006, 18, 4681-9.
20. Alexander, G. V.; S, I. M.; Murugan, R. Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities. Ionics 2021, 27, 4105-26.
21. Geiger, C. A.; Alekseev, E.; Lazic, B.; et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg. Chem. 2011, 50, 1089-97.
22. Li, Y.; Han, J. T.; Wang, C. A.; et al. Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12. J. Power. Sources. 2012, 209, 278-81.
23. Jin, Y.; Mcginn, P. J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power. Sources. 2011, 196, 8683-7.
24. Rangasamy, E.; Wolfenstine, J.; Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid. State. Ionics. 2012, 206, 28-32.
25. El-shinawi, H.; Paterson, G. W.; Maclaren, D. A.; Cussen, E. J.; Corr, S. A. Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets. J. Mater. Chem. A. 2017, 5, 319-29.
26. Rosenkiewitz, N.; Schuhmacher, J.; Bockmeyer, M.; Deubener, J. Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet
27. Qin, S.; Zhu, X.; Jiang, Y.; Ling, M.; Hu, Z.; Zhu, J. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl. Phys. Lett. 2018, 112, 113901.
28. Wu, J. F.; Chen, E. Y.; Yu, Y.; et al. Gallium-Doped Li7La3Zr2O12 Garnet-type electrolytes with high lithium-ion conductivity. ACS. Appl. Mater. Interfaces. 2017, 9, 1542-52.
29. Dong, B.; Yeandel, S. R.; Goddard, P.; Slater, P. R. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chem. Mater. 2020, 32, 215-23.
30. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte. J. Power. Sources. 2013, 230, 261-6.
31. Thompson, T.; Wolfenstine, J.; Allen, J. L.; et al. Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A. 2014, 2, 13431-6.
32. Zhou, Y.; Li, X.; Yang, Y.; Huang, X.; Tian, B. Production of Ta-doped Li7La3Zr2O12 solid electrolyte with high critical current density. ACS. Appl. Energy. Mater. 2022, 5, 13817-28.
33. Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x = 0-2). J. Power. Sources. 2011, 196, 3342-5.
34. Deviannapoorani, C.; Dhivya, L.; Ramakumar, S.; Murugan, R. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J. Power. Sources. 2013, 240, 18-25.
35. Shi, J.; Sun, G.; Li, L.; et al. Fluorine substitution at the O-site imparts enhanced chemical stability for garnet-structured electrolytes. ACS. Energy. Lett. 2023, 8, 48-55.
36. Wang, S.; Zeng, T.; Wen, X.; et al. Optimized lithium ion coordination via chlorine substitution to enhance ionic conductivity of garnet-based solid electrolytes. Small 2024, 20, e2309874.
37. Sun, F.; Yang, Y.; Zhao, S.; et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte. ACS. Energy. Lett. 2022, 7, 2835-44.
38. Miara, L. J.; Ong, S. P.; Mo, Y.; et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet
39. Ma, K.; Chen, B.; Li, C.; Thangadurai, V. Experimental and computational study of Mg and Ta-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state lithium batteries. Adv. Sustain. Syst. 2024, 8, 2300656.
40. Sharifi, O.; Golmohammad, M.; Soozandeh, M.; Mehranjani, A. S. Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries. J. Solid. State. Electrochem. 2023, 27, 2433-44.
41. Wang, Y.; Chen, Z.; Jiang, K.; Shen, Z.; Passerini, S.; Chen, M. Accelerating the development of LLZO in Solid-state batteries toward commercialization: a comprehensive review. Small 2024, 20, e2402035.
42. Kuhn, A.; Köhler, J.; Lotsch, B. V. Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12. Phys. Chem. Chem. Phys. 2013, 15, 11620-2.
43. Arbi, K.; Hoelzel, M.; Kuhn, A.; García-Alvarado, F.; Sanz, J. Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. Phys. Chem. Chem. Phys. 2014, 16, 18397-405.
44. Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2015, 35, 1477-84.
45. Zhou, Y.; Gao, A.; Duan, M.; et al. Quasi-in situ XPS insights into the surface chemistry of garnet-type Li6.4La3Zr1.4Ta0.6O12 solid-state electrolytes: the overlooked impact of pretreatments and a direct observation of the formation of LiOH. ACS. Appl. Mater. Interfaces. 2023, 15, 45465-74.
46. Gao, X.; Fisher, C. A. J.; Ikuhara, Y. H.; et al. Cation ordering in A-site-deficient Li-ion conducting perovskites La(1-x)/3LixNbO3. J. Mater. Chem. A. 2015, 3, 3351-9.
47. Lou, C.; Liu, J.; Sun, X.; et al. Correlating local structure and migration dynamics in Na/Li dual ion conductor Na5YSi4O12. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2401109121.
48. Sun, G.; Lou, C.; Yi, B.; et al. Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries. Nat. Commun. 2023, 14, 6501.
49. Lou, C.; Zhang, W.; Liu, J.; et al. The glass phase in the grain boundary of Na3Zr2Si2PO12, created by gallium modulation. Chem. Sci. 2024, 15, 3988-95.
50. Shi, Y.; Fu, J.; Hui, K.; et al. Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries. Microstructures 2021, 1, 2021005.
52. Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods. Primers. 2021, 1, 2.
53. Chien, P.; Griffith, K. J.; Liu, H.; Gan, Z.; Hu, Y. Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annu. Rev. Mater. Res. 2020, 50, 493-520.
54. Brown, S. P.; Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 2001, 101, 4125-56.
55. Wüllen L, Echelmeyer T, Meyer HW, Wilmer D. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys. Chem. Chem. Phys. 2007, 9, 3298-303.
56. Nyman, M.; Alam, T. M.; Mcintyre, S. K.; Bleier, G. C.; Ingersoll, D. Alternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes. Chem. Mater. 2010, 22, 5401-10.
57. Truong, L.; Thangadurai, V. Soft-Chemistry of Garnet-Type Li5+xBaxLa3-xNb2O1 ( x = 0, 0.5, 1): Reversible H+ ↔ Li+ ion-exchange reaction and their X-ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization. Chem. Mater. 2011, 23, 3970-7.
58. Buschmann, H.; Dölle, J.; Berendts, S.; et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378-92.
59. Kuhn, A.; Choi, J.; Robben, L.; Tietz, F.; Wilkening, M.; Heitjans, P. Li ion dynamics in Al-doped garnet-type Li7La3Zr2O12 crystallizing with cubic symmetry. Z. für. Phys. Chem. 2012, 226, 525-37.
60. Düvel, A.; Kuhn, A.; Robben, L.; Wilkening, M.; Heitjans, P. Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J. Phys. Chem. C. 2012, 116, 15192-202.
61. Rettenwander, D.; Blaha, P.; Laskowski, R.; et al. DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet. Chem. Mater. 2014, 26, 2617-23.
62. Rettenwander, D.; Geiger, C. A.; Tribus, M.; Tropper, P.; Amthauer, G. A synthesis and crystal chemical study of the fast ion conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84. Inorg. Chem. 2014, 53, 6264-9.
63. Bernuy-lopez, C.; Manalastas, W.; Lopez, A. J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater. 2014, 26, 3610-7.
64. Rettenwander, D.; Langer, J.; Schmidt, W.; et al. Site Occupation of Ga and Al in Stabilized Cubic Li7-3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields. Chem. Mater. 2015, 27, 3135-42.
65. Rettenwander, D.; Wagner, R.; Langer, J.; Maier, M. E.; Wilkening, M.; Amthauer, G. Crystal chemistry of “Li7La3Zr2O12” garnet doped with Al, Ga, and Fe: a short review on local structures as revealed by NMR and Mößbauer spectroscopy studies. Eur. J. Mineral. 2016, 28, 619-29.
66. Karasulu, B.; Emge, S. P.; Groh, M. F.; Grey, C. P.; Morris, A. J. Al/Ga-doped Li7La3Zr2O12 garnets as Li-ion solid-state battery electrolytes: atomistic insights into local coordination environments and their influence on 17O, 27Al, and 71Ga NMR Spectra. J. Am. Chem. Soc. 2020, 142, 3132-48.
67. Vema, S.; Berge, A. H.; Nagendran, S.; Grey, C. P. Clarifying the dopant local structure and effect on ionic conductivity in garnet solid-state electrolytes for lithium-ion batteries. Chem. Mater. 2023, 35, 9632-46.
68. Wang, D.; Zhong, G.; Pang, W. K.; et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 2015, 27, 6650-9.
69. Ranque, P.; Zagórski, J.; Devaraj, S.; Aguesse, F.; López, A. J. M. Characterization of the interfacial Li-ion exchange process in a ceramic-polymer composite by solid state NMR. J. Mater. Chem. A. 2021, 9, 17812-20.
70. Ghorbanzade, P.; Accardo, G.; Gomez, K.; et al. Influence of the LLZO-PEO interface on the micro- and macro-scale properties of composite polymer electrolytes for solid-state batteries. Mater. Today. Energy. 2023, 38, 101448.
71. Ghorbanzade, P.; Pesce, A.; Gómez, K.; et al. Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes. J. Mater. Chem. A. 2023, 11, 11675-83.
72. Zheng, J.; Tang, M.; Hu, Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angewandte. Chemie. 2016, 128, 12726-30.
73. Hu, W.; Chien, P.; Wu, N.; Zhong, S. High Li+ conducting porous garnet enables fast Li+ conduction in polymer/garnet composite electrolyte. ACS. Appl. Energy. Mater. 2024, 7, 8077-84.
74. Lu, Z.; Peng, L.; Rong, Y.; et al. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy. Environ. Mater. 2024, 7, e12498.
75. Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y. Y.; Chan, C. K. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS. Appl. Mater. Interfaces. 2017, 9, 21773-80.
76. Zheng, J.; Dang, H.; Feng, X.; Chien, P.; Hu, Y. Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether. J. Mater. Chem. A. 2017, 5, 18457-63.
77. He, J.; Chen, H.; Wang, D.; Zhang, Q.; Zhong, G.; Peng, Z. Interfacial barrier of ion transport in poly (ethylene oxide)-Li7La3Zr2O12 composite electrolytes illustrated by 6Li-tracer nuclear magnetic resonance spectroscopy. J. Phys. Chem. Lett. 2022, 13, 1500-5.
78. Wu, L.; Wang, Y.; Tang, M.; et al. Lithium-ion transport enhancement with bridged ceramic-polymer interface. Energy. Storage. Mater. 2023, 58, 40-7.
79. Zhang, X.; Cheng, S.; Fu, C.; et al. Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries. Adv. Energy. Mater. 2024, 14, 2401802.
80. Koch, B.; Vogel, M. Lithium ionic jump motion in the fast solid ion conductor Li5La3Nb2O12. Solid. State. Nucl. Magn. Reson. 2008, 34, 37-43.
81. Narayanan, S.; Epp, V.; Wilkening, M.; Thangadurai, V. Macroscopic and microscopic Li+ transport parameters in cubic garnet-type “Li6.5La2.5Ba0.5ZrTaO12” as probed by impedance spectroscopy and NMR. RSC. Adv. 2012, 2, 2553.
82. Kuhn, A.; Narayanan, S.; Spencer, L.; Goward, G.; Thangadurai, V.; Wilkening, M. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B. 2011, 83.
83. Bottke, P.; Rettenwander, D.; Schmidt, W.; Amthauer, G.; Wilkening, M. Ion Dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem. Mater. 2015, 27, 6571-82.
84. Böhmer, R.; Jeffrey, K.; Vogel, M. Solid-state Li NMR with applications to the translational dynamics in ion conductors. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87-174.
85. Kuhn, A.; Epp, V.; Schmidt, G.; Narayanan, S.; Thangadurai, V.; Wilkening, M. Spin-alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure. J. Phys. Condens. Matter. 2012, 24, 035901.
86. Hayamizu, K.; Matsuda, Y.; Matsui, M.; Imanishi, N. Lithium ion diffusion measurements on a garnet-type solid conductor
87. Hayamizu, K.; Seki, S.; Haishi, T. Lithium ion micrometer diffusion in a garnet-type cubic Li7La3Zr2O12 (LLZO) studied using 7Li NMR spectroscopy. J. Chem. Phys. 2017, 146, 024701.
88. Hayamizu, K.; Seki, S.; Haishi, T. Non-uniform lithium-ion migration on micrometre scale for garnet- and NASICON-type solid electrolytes studied by 7Li PGSE-NMR diffusion spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 17615-23.
89. Hayamizu, K.; Terada, Y.; Kataoka, K.; Akimoto, J.; Haishi, T. Relationship between Li+ diffusion and ion conduction for single-crystal and powder garnet-type electrolytes studied by 7Li PGSE NMR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 23589-97.
90. Hayamizu, K.; Terada, Y.; Kataoka, K.; Akimoto, J. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO-Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. J. Chem. Phys. 2019, 150, 194502.
91. Kataoka, K.; Akimoto, J. High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12. Chem. Electro. Chem. 2018, 5, 2551-7.
92. Kuhn, A.; Kunze, M.; Sreeraj, P.; et al. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid. State. Nucl. Magn. Reson. 2012, 42, 2-8.
93. Castillo, A.; Charpentier, T.; Rapaud, O.; et al. Bulk Li mobility enhancement in Spark Plasma Sintered Li7 - 3xAlxLa3Zr2O12 garnet. Ceram. Int. 2018, 44, 18844-50.
94. Wagner, R.; Redhammer, G. J.; Rettenwander, D.; et al. Crystal structure of garnet-related Li-ion conductor Li7-3x GaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification? Chem. Mater. 2016, 28, 1861-71.
95. Hogrefe, K.; Minafra, N.; Zeier, W. G.; Wilkening, H. M. R. Tracking ions the direct way: long-range Li+ dynamics in the thio-LISICON family Li4MCh4 (M = Sn, Ge; Ch = S, Se) as probed by 7Li NMR relaxometry and 7Li spin-alignment echo NMR. J. Phys. Chem. C. Nanomater. Interfaces. 2021, 125, 2306-17.
96. Duff, B. B.; Elliott, S. J.; Gamon, J.; Daniels, L. M.; Rosseinsky, M. J.; Blanc, F. Toward understanding of the Li-Ion migration pathways in the lithium aluminum sulfides Li3AlS3 and Li4.3AlS3.3Cl0.7 via 6,7Li solid-state nuclear magnetic resonance spectroscopy. Chem. Mater. 2023, 35, 27-40.
97. Ganapathy, S.; Yu, C.; van, E. E. R. H.; Wagemaker, M. Peeking across grain boundaries in a solid-state ionic conductor. ACS. Energy. Lett. 2019, 4, 1092-7.
98. Han, F.; Westover, A. S.; Yue, J.; et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy. 2019, 4, 187-96.
99. Tian, H.; Liu, Z.; Ji, Y.; Chen, L.; Qi, Y. Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem. Mater. 2019, 31, 7351-9.
100. Shen, F.; Dixit, M. B.; Xiao, X.; Hatzell, K. B. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS. Energy. Lett. 2018, 3, 1056-61.
101. Marbella, L. E.; Zekoll, S.; Kasemchainan, J.; Emge, S. P.; Bruce, P. G.; Grey, C. P. 7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries. Chem. Mater. 2019, 31, 2762-9.
102. Chandrashekar, S.; Trease, N. M.; Chang, H. J.; Du, L. S.; Grey, C. P.; Jerschow, A. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 2012, 11, 311-5.
103. Chang, W.; May, R.; Wang, M.; et al. Evolving contact mechanics and microstructure formation dynamics of the lithium metal-
104. Pecher, O.; Carretero-gonzález, J.; Griffith, K. J.; Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 2017, 29, 213-42.
105. Tang, M.; Sarou-Kanian, V.; Melin, P.; et al. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging. Nat. Commun. 2016, 7, 13284.
106. Nishiyama, Y.; Hou, G.; Agarwal, V.; Su, Y.; Ramamoorthy, A. Ultrafast magic angle spinning solid-state NMR spectroscopy: advances in methodology and applications. Chem. Rev. 2023, 123, 918-88.
107. Steinberg, Y.; Sebti, E.; Moroz, I. B.; et al. Composition and structure of the solid electrolyte interphase on Na-ion anodes revealed by exo- and endogenous dynamic nuclear polarization - NMR spectroscopy. J. Am. Chem. Soc. 2024, 146, 24476-92.
108. Maity, A.; Svirinovsky-Arbeli, A.; Buganim, Y.; Oppenheim, C.; Leskes, M. Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy. Nat. Commun. 2024, 15, 9956.
109. Hogrefe, K.; Stainer, F.; Minafra, N.; Zeier, W. G.; Wilkening, H. M. R. NMR down to cryogenic temperatures: accessing the rate-limiting step of Li transport in argyrodite electrolytes. Chem. Mater. 2024, 36, 6527-34.