REFERENCES

1. Shi, Y.; Li, X.; Sun, X.; Shao, X.; Wang, H. Strategies for improving the sensing performance of In2O3-based gas sensors for ethanol detection. J. Alloys. Compd. 2023, 963, 171190.

2. Comini, E. Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta. 2006, 568, 28-40.

3. Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem. 2002, 74, 2781-800.

4. Kim, H.; Uddin, S. Z.; Lien, D. H.; et al. Actively variable-spectrum optoelectronics with black phosphorus. Nature 2021, 596, 232-7.

5. Ma, N.; Ide, S.; Suematsu, K.; Watanabe, K.; Shimanoe, K. Novel solid electrolyte CO2 gas sensors based on c-Axis-oriented Y-doped La9.66Si5.3B0.7O26.14. ACS. Appl. Mater. Interfaces. 2020, 12, 21515-20.

6. Hyodo, T.; Hiura, T.; Nagae, K.; Ueda, T.; Shimizu, Y. Effects of catalytic combustion behavior and adsorption/desorption properties on ethanol-sensing characteristics of adsorption/combustion-type gas sensors. J. Asian. Ceram. Soc. 2021, 9, 1015-30.

7. Mirzaei, A.; Ansari, H. R.; Shahbaz, M.; Kim, J.; Kim, H. W.; Kim, S. S. Metal oxide semiconductor nanostructure gas sensors with different morphologies. Chemosensors 2022, 10, 289.

8. Kgomo, M. B.; Swart, H. C.; Mhlongo, G. H. Engineering of mesoporous cube-like In2O3 products as ethanol detection platform at low operating temperature: effects of different transition metals as dopant ions. ACS. Omega. 2024, 9, 6325-38.

9. Xin, J.; Wang, W.; Xie, L.; et al. MOF-derived Al3+-doped Co3O4 nanocomposites for highly n-butanol gas sensing performance at low operating temperature. J. Alloys. Compd. 2024, 978, 173341.

10. Ma, C.; Yang, Q.; Su, H.; Yang, H.; Wang, X.; Zeng, D. Cu-MOF-derived C-doped CuO/Cu2O hollow nano-octahedrons for room-temperature NO2 sensing at the ppb level. ACS. Appl. Nano. Mater. 2024, 7, 3105-15.

11. He, F.; Zhang, Y.; Chen, H.; et al. Highly sensitive and selective gas sensor based on SnO2/Fe2O3@rGO nanocomposite for detection of formaldehyde. Mater. Chem. Phys. 2024, 312, 128646.

12. Yang, Q.; Wu, Y.; Liu, Y.; Pan, C.; Wang, Z. L. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires. Phys. Chem. Chem. Phys. 2014, 16, 2790-800.

13. Li, L.; Zhang, Y.; Wang, R.; et al. Ferroelectricity-induced performance enhancement of V-doped ZnO/Si photodetector by direct energy band modulation. Nano. Energy. 2019, 65, 104046.

14. Anjana, R.; Subha, P. P.; Kurias, M. K.; Jayaraj, M. K. Enhanced green upconversion luminescence in ZnO: Er3+, Yb3+ on Mo6+ co-doping for temperature sensor application. Methods. Appl. Fluoresc. 2017, 6, 015005.

15. Cao, L.; Kiely, J.; Piano, M.; Luxton, R. Nanoparticle-based 3D membrane for impedimetric biosensor applications. Bioelectrochemistry 2020, 136, 107593.

16. Du, G.; Feng, P.; Cheng, X.; Li, J.; Luo, X. Immobilizing of ZIF-8 derived ZnO with controllable morphologies on zeolite A for efficient photocatalysis. J. Solid. State. Chem. 2017, 255, 215-8.

17. Ren, X.; Xu, Z.; Liu, D.; Li, Y.; Zhang, Z.; Tang, Z. Conductometric NO2 gas sensors based on MOF-derived porous ZnO nanoparticles. Sens. Actuators. B:. Chem. 2022, 357, 131384.

18. Bulemo, P. M. Ga-doped ZnO microbelts based resistive-type sensor for detection of acetylene gas. ACS. Appl. Electron. Mater. 2023, 5, 2106-14.

19. Dai, H.; Ding, J.; Chen, H.; Fu, H. Improvement of ethanolamine sensing performance based on Au-modified ZnO rod-like nanoflowers. Mater. Lett. 2023, 340, 134183.

20. Xu, J.; Li, S.; Li, L.; Chen, L.; Zhu, Y. Facile fabrication and superior gas sensing properties of spongelike Co-doped ZnO microspheres for ethanol sensors. Ceram. Int. 2018, 44, 16773-80.

21. Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuators. A:. Phys. 2017, 267, 242-61.

22. Cao, S.; Song, Z.; Bing, Y.; Xu, X.; Zhou, T.; Zhang, T. Metal-organic-framework derived Co-Mo multimetal oxide semiconductors: selective trace-level hydrogen sulfide detection. ACS. Sens. 2024, 9, 2979-88.

23. Phuoc, P. H.; Viet, N. N.; Thong, L. V.; et al. Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO-SnO2 internal heterojunctions for ppb H2S and NO2 gases detection. Sens. Actuators. B:. Chem. 2021, 334, 129606.

24. Yang, H.; Zhang, S.; Li, M.; et al. Hollow Au-ZnO/CN nanocages derived from ZIF-8 for efficient visible-light-driven hydrogen evolution from formaldehyde alkaline solution. Eur. J. Inorg. Chem. 2019, 2019, 2761-7.

25. Kang, Y.; Zhang, L.; Wang, W.; Yu, F. Ethanol sensing properties and first principles study of Au supported on mesoporous ZnO derived from metal organic framework ZIF-8. Sensors. (Basel). 2021, 21, 4352.

26. Wang, Z.; Yang, X.; Sun, C.; et al. Excellent acetone sensing performance of Au NPs functionalized Co3O4-ZnO nanocomposite. Sens. Rev. 2022, 42, 638-47.

27. Kamble, V. S.; Navale, Y. H.; Patil, V. B.; Desai, N. K.; Vajekar, S. N.; Salunkhe, S. T. Studies on structural, spectral and morphological properties of co-precipitation derived Co-doped ZnO nanocapsules for NO2 sensing applications. J. Mater. Sci:. Mater. Electron. 2021, 32, 26503-19.

28. Peng, H.; Liu, F.; Liu, X.; et al. Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. ACS. Catal. 2014, 4, 3797-805.

29. Duan, D.; Hao, C.; He, G.; et al. Co3O2 Nanosheet/Au Nanoparticle/CeO2 nanorod composites as catalysts for CO oxidation at room temperature. ACS. Appl. Nano. Mater. 2020, 3, 12416-26.

30. Zhang, L.; Dong, R.; Zhu, Z.; Wang, S. Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens. Actuators. B:. Chem. 2017, 245, 112-21.

31. Zhang, J.; Liu, X.; Wu, S.; Xu, M.; Guo, X.; Wang, S. Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor. J. Mater. Chem. 2010, 20, 6453.

32. Kaskow, I.; Decyk, P.; Sobczak, I. The effect of copper and silver on the properties of Au-ZnO catalyst and its activity in glycerol oxidation. Appl. Surf. Sci. 2018, 444, 197-207.

33. Rahbarpour, S.; Sajed, S.; Ghodsi, N.; Ghafoorifard, H. Operating temperature dependence of sensitivity in Ag-TiO2 Schottky type gas sensors. Mater. Res. Express. 2019, 6, 085905.

34. Hsueh, T.; Hsu, C. Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles. Sens. Actuators. B:. Chem. 2008, 131, 572-6.

35. Zhang, J.; Ma, S.; Wang, B.; Pei, S. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys. Compd. 2021, 886, 161299.

36. Wang, J.; Li, Z.; Zhang, S.; et al. Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sens. Actuators. B:. Chem. 2018, 255, 862-70.

37. Young, S.; Chu, Y. Hydrothermal synthesis and improved CH₃OH-sensing performance of ZnO nanorods with adsorbed Au NPs. IEEE. Trans. Electron. Devices. 2021, 68, 1886-91.

38. Wang, S.; Xiao, B.; Yang, T.; et al. Enhanced HCHO gas sensing properties by Ag-loaded sunflower-like In2O3 hierarchical nanostructures. J. Mater. Chem. A. 2014, 2, 6598-604.

39. Yan, S.; Ma, S.; Li, W.; et al. Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. Sens. Actuators. B:. Chem. 2015, 221, 88-95.

40. Pei, S.; Ma, S.; Xu, X.; Almamoun, O.; Ma, Y.; Xu, X. Exploring gas-sensing characteristics of (CH2OH)2 with controlling the morphology of BiVO4 by adjusting pH of solution. J. Alloys. Compd. 2021, 859, 158400.

41. Mirzaei, A.; Leonardi, S.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 2016, 42, 15119-41.

42. Gao, Y.; Wang, X.; Zhang, Z.; et al. Synthesis of ZnO nanosheets @In2O3 hollow micro-rods heterostructures for enhanced ethanol gas sensing performance. Sens. Actuators. B:. Chem. 2024, 404, 135271.

43. Wen, Z.; Tian-mo, L. Gas-sensing properties of SnO2-TiO2-based sensor for volatile organic compound gas and its sensing mechanism. Phys. B:. Condens. Matter. 2010, 405, 1345-8.

44. Pei, S.; Ma, S.; Xu, X.; Xu, X.; Almamoun, O. Modulated PrFeO3 by doping Sm3+ for enhanced acetone sensing properties. J. Alloys. Compd. 2021, 856, 158274.

45. Doan, T. L. H.; Kim, J.; Lee, J.; et al. Preparation of n-ZnO/p-Co3O4 heterojunctions from zeolitic imidazolate frameworks (ZIF-8/ZIF-67) for sensing low ethanol concentrations. Sens. Actuators. B:. Chem. 2021, 348, 130684.

46. Qin, C.; Wang, Y.; Gong, Y.; Zhang, Z.; Cao, J. CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: hydrothermal synthesis and ethanol gas sensing application. J. Alloys. Compd. 2019, 770, 972-80.

47. Xiong, Y.; Xu, W.; Zhu, Z.; et al. ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens. Actuators. B:. Chem. 2017, 253, 523-32.

48. Zhao, S.; Shen, Y.; Hao, F.; et al. P-n junctions based on CuO-decorated ZnO nanowires for ethanol sensing application. Appl. Surf. Sci. 2021, 538, 148140.

49. Kamalianfar, A. Promotional effects of Ag decoration on root-like ZnO microstructures for ethanol sensing. J. Mater. Sci:. Mater. Electron. 2023, 34, 10678.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/