REFERENCES

1. Navickas, E.; Chen, Y.; Lu, Q.; et al. Dislocations accelerate oxygen ion diffusion in La0.8Sr0.2MnO3 epitaxial thin films. ACS. Nano. 2017, 11, 11475.

2. De, S. R. A.; Fleig, J.; Maier, J.; et al. Electrical and structural characterization of a low-angle tilt grain boundary in iron-doped strontium titanate. J. Am. Ceram. Soc. 2003, 86, 922-8.

3. Marrocchelli, D.; Sun, L.; Yildiz, B. Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport. J. Am. Chem. Soc. 2015, 137, 4735-48.

4. Hirel, P.; Mark, A. F.; Castillo-rodriguez, M.; Sigle, W.; Mrovec, M.; Elsässer, C. Theoretical and experimental study of the core structure and mobility of dislocations and their influence on the ferroelectric polarization in perovskite KNbO3. Phys. Rev. B. 2015, 92, 214101.

5. Gao, P.; Nelson, C. T.; Jokisaari, J. R.; et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nat. Commun. 2011, 2, 591.

6. Xie, S.; Xu, Q.; Chen, Q.; Zhu, J.; Wang, Q. Realizing super-high piezoelectricity and excellent fatigue resistance in domain-engineered bismuth titanate ferroelectrics. Adv. Funct. Mater. 2024, 34, 2312645.

7. Porz, L.; Klomp, A. J.; Fang, X.; et al. Dislocation-toughened ceramics. Mater. Horiz. 2021, 8, 1528-37.

8. Jia, C. L.; Mi, S. B.; Urban, K.; Vrejoiu, I.; Alexe, M.; Hesse, D. Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer. Phys. Rev. Lett. 2009, 102, 117601.

9. Höfling, M.; Zhou, X.; Riemer, L. M.; et al. Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science 2021, 372, 961-4.

10. Tan, X.; Ma, C.; Frederick, J.; Beckman, S.; Webber, K. G.; Green, D. J. The antiferroelectric↔ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 2011, 94, 4091-107.

11. Hao, X.; Zhai, J.; Kong, L. B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1-57.

12. Guo, B.; Jin, F.; Li, L.; Pan, Z.; Xu, X.; Wang, H. Design strategies of high-performance lead-free electroceramics for energy storage applications. Rare. Met. 2024, 43, 853-78.

13. Cabral, M. J.; Chen, Z.; Liao, X. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures 2023, 3, 2023040.

14. Gao, B.; Qi, H.; Liu, H.; Chen, J. Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chin. Chem. Lett. 2024, 35, 108598.

15. Liu, H.; Zhou, Z.; Qiu, Y.; et al. An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Mater. Horiz. 2020, 7, 1912-8.

16. Wang, H.; Liu, Y.; Yang, T.; Zhang, S. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 2019, 29, 1807321.

17. Berlincourt, D.; Krueger, H.; Jaffe, B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J. Phys. Chem. Solids. 1964, 25, 659-74.

18. Berlincourt, D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE. Trans. Son. Ultrason. 1966, 13, 116-24.

19. Viehland, D.; Forst, D.; Xu, Z.; Li, J. Incommensurately modulated polar structures in antiferroelectric sn-modified lead zirconate titanate: the modulated structure and its influences on electrically induced polarizations and strains. J. Am. Ceram. Soc. 1995, 78, 2101-12.

20. Hoover, B. D.; Tuttle, B. A.; Olson, W. R.; Goy, D. M.; Brooks, R. A.; King, C. F. Evaluation of field enforced antiferroelectric to ferroelectric phase transition dielectrics and relaxor ferroelectrics for pulse discharge capacitors. Technical. Reports. 1997.

21. Taeri, S.; Brunner, D.; Sigle, W.; Rühle, M. Deformation behaviour of strontium titanate between room temperature and 1800 K under ambient pressure. Int. J. Mater. Res. 2022, 95, 433-46.

22. Bonnet, R.; Loubradou, M. Crystalline defects in a B.C.T. Al2Cu(θ) single crystal obtained by unidirectional solidification along [001]. phys. stat. sol. (a). 2002, 194, 173-91.

23. Kondo, S.; Mitsuma, T.; Shibata, N.; Ikuhara, Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2016, 2, e1501926.

24. Ferré, D.; Carrez, P.; Cordier, P. Modeling dislocation cores in SrTiO3 using the Peierls-Nabarro model. Phys. Rev. B. 2008, 77, 014106.

25. Gumbsch, P.; Taeri-Baghbadrani, S.; Brunner, D.; Sigle, W.; Rühle, M. Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys. Rev. Lett. 2001, 87, 085505.

26. Li, J.; Zhou, J.; Xu, S.; et al. Effects of cryogenic treatment on mechanical properties and micro-structures of IN718 super-alloy. Mater. Sci. Eng. A. 2017, 707, 612-9.

27. Wang, H.; Li, K.; Li, G.; et al. Microstructure and properties of spinning deformed A356 alloy subject to the solution-DCT-aging multiplex heat treatment. J. Mater. Res. Technol. 2023, 23, 5520-33.

28. Murr, L. E. Some observations of grain boundary ledges and ledges as dislocation sources in metals and alloys. Metall. Trans. A. 1975, 6, BF02658408.

29. Kacher, J.; Robertson, I. Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta. Mater. 2012, 60, 6657-72.

30. Asada, T.; Koyama, Y. La-induced conversion between the ferroelectric and antiferroelectric incommensurate phases in Pb1−xLax(Zr1−yTiy)O3. Phys. Rev. B. 2004, 69, 104108.

31. Sawaguchi, E.; Maniwa, H.; Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 1951, 83, 1078.

32. Ma, T.; Fan, Z.; Xu, B.; et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys. Rev. Lett. 2019, 123, 217602.

33. Gao, B.; Liu, H.; Zhou, Z.; et al. An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites. Microstructures 2022, 2, 2022010.

34. Li, Z.; Fu, Z.; Cai, H.; et al. Discovery of electric devil’s staircase in perovskite antiferroelectric. Sci. Adv. 2022, 8, eabl9088.

35. Fu, Z.; Chen, X.; Li, Z.; et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat. Commun. 2020, 11, 3809.

36. Hu, T.; Fu, Z.; Li, Z.; et al. Decoding the double/multiple hysteresis loops in antiferroelectric materials. ACS. Appl. Mater. Interfaces. 2021, 13, 60241-9.

37. Hirel, P.; Mrovec, M.; Elsässer, C. Atomistic simulation study of <110> dislocations in strontium titanate. Acta. Mater. 2012, 60, 329-38.

38. Hirth, J. P.; Lothe, J.; Mura, T. Theory of dislocations (2nd ed.). J. Appl. Mech. 1983, 50, 476-7.

39. Bierman, M. J.; Lau, Y. K.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Dislocation-driven nanowire growth and eshelby twist. Science 2008, 320, 1060-3.

40. Cho, J.; Li, Q.; Wang, H.; et al. High temperature deformability of ductile flash-sintered ceramics via in situ compression. Nat. Commun. 2018, 9, 2063.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/