REFERENCES

1. Ríos, C.; Stegmaier, M.; Hosseini, P.; et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 2015, 9, 725-32.

2. Feldmann, J.; Stegmaier, M.; Gruhler, N.; et al. Calculating with light using a chip-scale all-optical abacus. Nat. Commun. 2017, 8, 1256.

3. Liu, B.; Li, K.; Liu, W.; et al. Multi-level phase-change memory with ultralow power consumption and resistance drift. Sci. Bull. 2021, 66, 2217-24.

4. Wen, S.; Meng, Y.; Jiang, M.; Wang, Y. Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films. Sci. Rep. 2018, 8, 4979.

5. Kim, E. T.; Lee, J. Y.; Kim, Y. T. Investigation of the structural transformation behavior of Ge2Sb2Te5 thin films using high resolution electron microscopy. Appl. Phys. Lett. 2007, 91, 101909.

6. Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 2017, 11, 465-76.

7. Yue, L.; Fang, T.; Zheng, S.; et al. Cu/Sb codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS. Appl. Energy. Mater. 2019, 2, 2596-603.

8. Wei, S. J.; Zhu, H. F.; Chen, K.; et al. Phase change behavior in titanium-doped Ge2Sb2Te5 films. Appl. Phys. Lett. 2011, 98, 231910.

9. Yin, Q.; Chen, L. Enhanced optical properties of Sn-doped Ge2Sb2Te5 thin film with structural evolution. J. Alloys. Compd. 2019, 770, 692-700.

10. Vinod, E. M.; Ramesh, K.; Sangunni, K. S. Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys. Sci. Rep. 2015, 5, 8050.

11. Agati, M.; Renaud, F.; Benoit, D.; Claverie, A. In-situ transmission electron microscopy studies of the crystallization of N-doped Ge-rich GeSbTe materials. MRS. Commun. 2018, 8, 1145-52.

12. Bourgeois, G.; Meli, V.; Al, M. F.; et al. Carbon ion implantation as healing strategy for improved reliability in phase-change memory arrays. Microelectron. Reliab. 2021, 126, 114221.

13. Shen, J.; Lv, S.; Chen, X.; et al. Thermal barrier phase change memory. ACS. Appl. Mater. Interfaces. 2019, 11, 5336-43.

14. Chong, T. C.; Shi, L. P.; Zhao, R.; et al. Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 2006, 88, 122114.

15. Lee, M. L.; Yong, K. T.; Gan, C. L.; Ting, L. H.; Muhamad, D. S. B.; Shi, L. P. Crystallization and thermal stability of Sn-doped Ge2Sb2Te5 phase change material. J. Phys. D. Appl. Phys. 2008, 41, 215402.

16. Lazarenko, P.; Kovalyuk, V.; An, P.; et al. Low power reconfigurable multilevel nanophotonic devices based on Sn-doped Ge2Sb2Te5 thin films. Acta. Mater. 2022, 234, 117994.

17. Xu, P.; Zheng, J.; Doylend, J. K.; Majumdar, A. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS. Photonics. 2019, 6, 553-7.

18. Zhang, H.; Yang, X.; Lu, L.; Chen, J.; Rahman, B. M. A.; Zhou, L. Comparison of the phase change process in a GST-loaded silicon waveguide and MMI. Opt. Express. 2021, 29, 3503-14.

19. Fang, Z.; Zheng, J.; Saxena, A.; Whitehead, J.; Chen, Y.; Majumdar, A. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater. 2021, 9, 2002049.

20. Halenkovič, T.; Baillieul, M.; Gutwirth, J.; Němec, P.; Nazabal, V. Amorphous Ge-Sb-Se-Te chalcogenide films fabrication for potential environmental sensing and nonlinear photonics. J. Materiomics. 2022, 8, 1009-19.

21. Zhang, Y.; Chou, J. B.; Li, J.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279.

22. Hu, Y.; Feng, X.; Li, S.; et al. Superlattice-like Sb50Se50/Ga30Sb70 thin films for high-speed and high density phase change memory application. Appl. Phys. Lett. 2013, 103, 152107.

23. Hui, J.; Hu, Q.; Luo, Y.; et al. Phase evolution and amorphous stability upon solid-state reaction in superlattice-like Ge-Sb-Te combinatorial thin films. ACS. Appl. Electron. Mater. 2020, 2, 3880-8.

24. Agati, M.; Gay, C.; Benoit, D.; Claverie, A. Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films. Appl. Surf. Sci. 2020, 518, 146227.

25. Xu, J.; Qi, C.; Chen, L.; Zheng, L.; Xie, Q. The microstructural changes of Ge2Sb2Te5 thin film during crystallization process. AIP. Adv. 2018, 8, 055006.

26. Teng, N.; Qin, J.; Chen, Y.; Wang, R.; Shen, X.; Xu, T. Optical properties and thermal stability of amorphous Ge-Sb-Se films. J. Non. Cryst. Solids. 2020, 532, 119888.

27. Hui, J.; Hu, Q.; Yuan, H.; et al. High-throughput study of amorphous stability and optical properties of superlattice-like Ge-Sb-Te thin films. Small 2024, 20, e2307792.

28. Hui, J.; Hu, Q.; Zhang, H.; et al. High-throughput investigation of structural evolution upon solid-state in Cu-Cr-Co combinatorial multilayer thin-film. Mater. Des. 2022, 215, 110455.

29. Donald, E. Pybaselines: a python library of algorithms for the baseline correction of experimental data. Zenodo 2022.

30. Virtanen, P.; Gommers, R.; Oliphant, T. E.; et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 2020, 17, 261-72.

31. Murtagh, F.; Contreras, P. Methods of hierarchical clustering; 2011. Available from: https://arxiv.org/abs/1105.0121 [Last accessed on 11 Mar 2025].

32. Weber, J. W.; Hansen, T. A. R.; van de Sanden, M. C. M.; Engeln, R. B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon. J. Appl. Phys. 2009, 106, 123503.

33. Yamada, N.; Matsunaga, T. Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory. J. App. Phys. 2000, 88, 7020-8.

34. Kyono, A.; Hayakawa, A.; Horiki, M. Selenium substitution effect on crystal structure of stibnite (Sb2S3). Phys. Chem. Minerals. 2015, 42, 475-90.

35. Akhtar, D.; Vankar, V.; Goel, T.; Chopra, K. Metastable structures of splat-cooled and vapour-depodited lead and antimony films. Thin. Solid. Films. 1979, 58, 327-32.

36. Salamat, A.; Briggs, R.; Bouvier, P.; et al. High-pressure structural transformations of Sn up to 138 GPa: angle-dispersive synchrotron x-ray diffraction study. Phys. Rev. B. 2013, 88, 104104.

37. Wu, S.; Son, B.; Zhang, L.; et al. Effects of high-temperature thermal annealing on GeSn thin-film material and photodetector operating at 2 µm. J. Alloys. Compd. 2021, 872, 159696.

38. Eising, G.; Niebuur, B.; Pauza, A.; Kooi, B. J. Competing crystal growth in Ge-Sb phase-change films. Adv. Funct. Mater. 2014, 24, 1687-94.

39. Janicki, T. D.; Wan, Z.; Liu, R.; Evans, P. G.; Schmidt, J. R. Guiding epitaxial crystallization of amorphous solids at the nanoscale: interfaces, stress, and precrystalline order. J. Chem. Phys. 2022, 157, 100901.

40. Jin, B.; Shao, C.; Wang, Y.; Mu, Z.; Liu, Z.; Tang, R. Anisotropic epitaxial behavior in the amorphous phase-mediated hydroxyapatite crystallization process: a new understanding of orientation control. J. Phys. Chem. Lett. 2019, 10, 7611-6.

41. Ríos, C.; Du, Q.; Zhang, Y.; et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 2022, 3, 70.

42. Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A. Research of the additional losses occurring in optical fiber at its multiple bends in the range waves 1310 nm, 1550 nm and 1625 nm long. J. Phys. Conf. Ser. 2016, 671, 012001.

43. Sun, X. Y.; Du, Q.; Goto, T.; et al. Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation. ACS. Photonics. 2015, 2, 856-63.

44. Ghosh, G. The sb-se (antimony-selenium) system. J. Phase. Equilibria. 1993, 14, 753-63.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/