REFERENCES

1. Chaloupka J, Jackeli G, Khaliullin G. Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Phys Rev Lett 2010;105:027204.

2. Choi SK, Coldea R, Kolmogorov AN, et al. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys Rev Lett 2012;108:127204.

3. Chaloupka J, Jackeli G, Khaliullin G. Zigzag magnetic order in the iridium oxide Na2IrO3. Phys Rev Lett 2013;110:097204.

4. Liu X, Berlijn T, Yin W, et al. Long-range magnetic ordering in Na2IrO3. Phys Rev B 2011;83:220403.

5. Hu K, Wang F, Feng J. First-principles study of the magnetic structure of Na2IrO3. Phys Rev Lett 2015;115:167204.

6. Takagi H, Takayama T, Jackeli G, Khaliullin G, Nagler SE. Concept and realization of Kitaev quantum spin liquids. Nat Rev Phys 2019;1:264-80.

7. Shitade A, Katsura H, Kunes J, Qi XL, Zhang SC, Nagaosa N. Quantum spin Hall effect in a transition metal oxide Na2IrO3. Phys Rev Lett 2009;102:256403.

8. Kim CH, Kim HS, Jeong H, Jin H, Yu J. Topological quantum phase transition in 5d transition metal oxide Na2IrO3. Phys Rev Lett 2012;108:106401.

9. Sohn CH, Kim H, Qi TF, et al. Mixing between Jeff = 1/2 and 3/2 orbitals in Na2IrO3: a spectroscopic and density functional calculation study. Phys Rev B 2013;88:085125.

10. Singh Y, Gegenwart P. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3. Phys Rev B 2010;82:064412.

11. Comin R, Levy G, Ludbrook B, et al. Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap. Phys Rev Lett 2012;109:266406.

12. Gretarsson H, Clancy JP, Liu X, et al. Crystal-field splitting and correlation effect on the electronic structure of A2IrO3. Phys Rev Lett 2013;110:076402.

13. Kim HJ, Lee JH, Cho JH. Antiferromagnetic slater insulator phase of Na2IrO3. Sci Rep 2014;4:5253.

14. Ye F, Chi S, Cao H, et al. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3. Phys Rev B 2012;85:180403.

15. Kimchi I, You Y. Kitaev-Heisenberg-J2-J3 model for the iridates A2IrO3. Phys Rev B 2011;84:180407.

16. Bhattacharjee S, Lee S, Kim YB. Spin-orbital locking, emergent pseudo-spin and magnetic order in honeycomb lattice iridates. New J Phys 2012;14:073015.

17. Rau JG, Lee EK, Kee HY. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys Rev Lett 2014;112:077204.

18. Baek SH, Do SH, Choi KY, et al. Evidence for a field-induced quantum spin liquid in α-Rucl3. Phys Rev Lett 2017;119:037201.

19. Bastien G, Garbarino G, Yadav R, et al. Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3. Phys Rev B 2018;97:037201.

20. Hu K, Zhou Z, Wei Y, Li C, Feng J. Bond ordering and phase transitions in Na2IrO3 under high pressure. Phys Rev B 2018;98:100103.

21. Simutis G, Barbero N, Rolfs K, et al. Chemical and hydrostatic-pressure effects on the Kitaev honeycomb material Na2IrO3. Phys Rev B 2018;98:104421.

22. Xi X, Bo X, Xu XS, et al. Honeycomb lattice Na2IrO3 at high pressures: a robust spin-orbit Mott insulator. Phys Rev B 2018;98:125117.

23. Jiang H, Gu Z, Qi X, Trebst S. Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: phase diagram of the Heisenberg-Kitaev model in a magnetic field. Phys Rev B 2011;83:245104.

24. Reuther J, Thomale R, Trebst S. Finite-temperature phase diagram of the Heisenberg-Kitaev model. Phys Rev B 2011;84:100406.

25. Yamaji Y, Nomura Y, Kurita M, Arita R, Imada M. First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations. Phys Rev Lett 2014;113:107201.

26. Rousochatzakis I, Reuther J, Thomale R, Rachel S, Perkins N. Phase diagram and quantum order by disorder in the Kitaev K1-K2 honeycomb magnet. Phys Rev X 2015;5:041035.

27. Fischer Ø, Kugler M, Maggio-aprile I, Berthod C, Renner C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev Mod Phys 2007;79:353-419.

28. Dziuba T, Pietsch I, Stark M, Traeger GA, Gegenwart P, Wenderoth M. Surface conductivity of the honeycomb spin-orbit mott insulator Na2IrO3. Phys Status Solidi B 2021;258:2000421.

29. Wiesendanger R, Güntherodt H, Güntherodt G, Gambino RJ, Ruf R. Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope. Phys Rev Lett 1990;65:247-50.

30. Wiesendanger R, Bürgler D, Tarrach G, et al. Vacuum tunneling of spin-polarized electrons detected by scanning tunneling microscopy. J Vac Sci Technol B 1991;9:519-24.

31. Oka H, Brovko OO, Corbetta M, Stepanyuk VS, Sander D, Kirschner J. Spin-polarized quantum confinement in nanostructures: scanning tunneling microscopy. Rev Mod Phys 2014;86:1127-68.

32. Pratzer M, Elmers HJ, Bode M, Pietzsch O, Kubetzka A, Wiesendanger R. Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. Phys Rev Lett 2001;87:127201.

33. Kubetzka A, Bode M, Pietzsch O, Wiesendanger R. Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips. Phys Rev Lett 2002;88:057201.

34. Wachowiak A, Wiebe J, Bode M, Pietzsch O, Morgenstern M, Wiesendanger R. Direct observation of internal spin structure of magnetic vortex cores. Science 2002;298:577-80.

35. Bode M, Heide M, von Bergmann K, et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007;447:190-3.

36. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 2007;78:013705.

37. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.

38. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

39. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

40. Hofer WA, Foster AS, Shluger AL. Theories of scanning probe microscopes at the atomic scale. Rev Mod Phys 2003;75:1287-331.

41. Park K, Meunier V, Pan M, Shelton W, Yu N, Plummer E. Nanoclusters of TiO2 wetted with gold. Surf Sci 2009;603:3131-5.

42. Li G, Li Q, Pan M, et al. Atomic-scale fingerprint of Mn dopant at the surface of Sr3(Ru1-xMnx)2O7. Sci Rep 2013;3:2882.

43. Lüpke F, Manni S, Erwin SC, Mazin II, Gegenwart P, Wenderoth M. Highly unconventional surface reconstruction of Na2IrO3 with persistent energy gap. Phys Rev B 2015;91:041405.

44. Kim BJ, Jin H, Moon SJ, et al. Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4. Phys Rev Lett 2008;101:076402.

45. Kim BJ, Ohsumi H, Komesu T, et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 2009;323:1329-32.

46. Calder S, Garlea VO, McMorrow DF, et al. Magnetically driven metal-insulator transition in NaOsO3. Phys Rev Lett 2012;108:257209.

47. Slater JC. Magnetic effects and the hartree-fock equation. Phys Rev 1951;82:538-41.

48. Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science 2009;325:1110-4.

49. Zhang J, Chen P, Yuan B, Ji W, Cheng Z, Qiu X. Real-space identification of intermolecular bonding with atomic force microscopy. Science 2013;342:611-4.

50. Hwan Chun S, Kim J, Kim J, et al. Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3. Nat Phys 2015;11:462-6.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/