REFERENCES

1. Energy Institute. Statistical Review of World Energy. 72nd ed. London: Energy Institute; 2023. p. 3.

2. Acar C, Dincer I, Naterer GF. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 2016;40:1449-73.

3. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37-8.

4. Gao X, Dai C, Xu ZJ, Lawrence NS, Fisher AC. An electrochemical method for monitoring the acidity of water for fuel cell and environmental applications. Energy Tech 2018;6:94-9.

5. Mao M, Xu J, Li Y, Liu Z. Hydrogen evolution from photocatalytic water splitting by LaMnO3 modified with amorphous CoSx. J Mater Sci 2020;55:3521-37.

6. Liu L, Huang H, Chen F, et al. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci Bull 2020;65:934-43.

7. Moradi M, Khorasheh F, Larimi A. Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4. Solar Energy 2020;211:100-10.

8. Tahir M, Tahir B. 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J 2020;400:125868.

9. Jiang Z, Ye Z, Shangguan W. Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting. Front Energy 2022;16:49-63.

10. Chen M, Sun T, Zhao W, et al. In situ growth of metallic 1T-MoS2 on TiO2 nanotubes with improved photocatalytic performance. ACS Omega 2021;6:12787-93.

11. Li Y, Sadaf SM, Zhou B. Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen. Front Energy 2024;18:56-79.

12. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 2019;48:2109-25.

13. Li H, Du H, Luo H, Wang H, Zhu W, Zhou Y. Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance. Microstructures 2023;3:2023024.

14. Wang J, Wang S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application. Coordin Chem Rev 2022;453:214338.

15. Wang J, Sun S, Zhou R, et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4. J Mater Sci Technol 2021;78:1-19.

16. Yi J, El-alami W, Song Y, Li H, Ajayan PM, Xu H. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. Chem Eng J 2020;382:122812.

17. Luo B, Zhao Y, Jing D. State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts. Front Energy 2021;15:600-20.

18. Zhao D, Guan X, Shen S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environ Chem Lett 2022;20:3505-23.

19. Chen M, Chang W, Zhang J, Zhao W, Chen Z. Preparation of a hybrid TiO2 and 1T/2H-MoS2 photocatalyst for the degradation of tetracycline hydrochloride. ACS Omega 2023;8:15458-66.

20. Low J, Jiang C, Cheng B, Wageh S, Al-ghamdi AA, Yu J. A review of direct Z-scheme photocatalysts. Small Methods 2017;1:1700080.

21. Das S, Deka T, Ningthoukhangjam P, Chowdhury A, Nair RG. A critical review on prospects and challenges of metal-oxide embedded g-C3N4-based direct Z-scheme photocatalysts for water splitting and environmental remediation. Appl Surf Sci Adv 2022;11:100273.

22. Belessiotis GV, Kontos AG. Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: review, analysis and perspectives. Renew En 2022;195:497-515.

23. Bard AJ. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photoch 1979;10:59-75.

24. Wang X, Liu G, Chen ZG, et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem Commun 2009;23:3452-4.

25. Xu Q, Zhang L, Yu J, Wageh S, Al-ghamdi AA, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today 2018;21:1042-63.

26. Fu J, Xu Q, Low J, Jiang C, Yu J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 2019;243:556-65.

27. Chen W, Liu T, Huang T, et al. A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation. RSC Adv 2015;5:101214-20.

28. Low J, Dai B, Tong T, Jiang C, Yu J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2 /CdS composite film photocatalyst. Adv Mater 2019;31:e1807920.

29. Koma A, Sunouchi K, Miyajima T. Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron Eng 1984;2:129-36.

30. Lou P, Lee JY. GeC/GaN vdW heterojunctions: a promising photocatalyst for overall water splitting and solar energy conversion. ACS Appl Mater Interfaces 2020;12:14289-97.

31. Xu Y, Jin X, Ge T, et al. Realizing efficient CO2 photoreduction in Bi3O4Cl: constructing van der Waals heterostructure with g-C3N4. Chem Eng J 2021;409:128178.

32. Rahimi K, Moshfegh AZ. Band alignment tuning of heptazine-g-C3N4/g-ZnO vdW heterostructure as a promising water-splitting photocatalyst. Phys Chem Chem Phys 2021;23:20675-85.

33. Wenna H, Xuefeng C, Minglei J, et al. A direct Z-scheme g-C6N6/InP van der Waals heterostructure: a promising photocatalyst for high-efficiency overall water splitting. J Phys D: Appl Phys 2022;55:264001.

34. Zhang Y, Qiao H, Yan Z, Duan L, Ni L, Fan J. PtS2/g-C3N4 van der Waals heterostructure: a direct Z-scheme photocatalyst with high optical absorption, solar-to-hydrogen efficiency and catalytic activity. Int J Hydrogen 2023;48:14659-69.

35. Yang J, Wei X, Wang Z, et al. The direct Z-scheme g-C6N6/WTe2 van der Waals heterojunction as photocatalyst over water splitting in the visible light: designing strategy from first principles. J Photoch Photobio A 2023;435:114263.

36. Zhang R, Zhang L, Zheng Q, Gao P, Zhao J, Yang J. Direct Z-scheme water splitting photocatalyst based on two-dimensional van der waals heterostructures. J Phys Chem Lett 2018;9:5419-24.

37. Wang J, Zhang X, Song X, Fan Y, Zhang Z, Zhao M. Insights into photoinduced carrier dynamics and overall water splitting of Z-scheme van der waals heterostructures with intrinsic electric polarization. J Phys Chem Lett 2023;14:798-808.

38. Wang Z, Luo Z, Li J, Yang K, Zhou G. 2D van der Waals heterostructures of graphitic BCN as direct Z-scheme photocatalysts for overall water splitting: the role of polar π-conjugated moieties. Phys Chem Chem Phys 2020;22:23735-42.

39. Dong H, Hong S, Zhang P, et al. Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production. Chem Eng J 2020;395:125150.

40. Meng J, Wang J, Wang J, Li Q, Yang J. C7N6/Sc2CCl2 weak van der waals heterostructure: a promising visible-light-driven Z-scheme water splitting photocatalyst with interface ultrafast carrier recombination. J Phys Chem Lett 2022;13:1473-9.

41. Wang B, Wang X, Wang P, et al. Bilayer MoSe2/HfS2 nanocomposite as a potential visible-light-driven Z-scheme photocatalyst. Nanomaterials 2019;9:1706.

42. Zheng X, Yang L, Li Y, Yang L, Luo S. Direct Z-scheme MoSe2 decorating TiO2 nanotube arrays photocatalyst for water decontamination. Electrochim Acta 2019;298:663-9.

43. Meng A, Zhu B, Zhong B, Zhang L, Cheng B. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Surf Sci 2017;422:518-27.

44. Ren K, Tang W, Sun M, Cai Y, Cheng Y, Zhang G. A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. Nanoscale 2020;12:17281-9.

45. Zhang Q, Ren K, Zheng R, Huang Z, An Z, Cui Z. First-principles calculations of two-dimensional CdO/HfS2 van der Waals heterostructure: direct Z-scheme photocatalytic water splitting. Front Chem 2022;10:879402.

46. Li H, Xu L, Huang X, et al. Two-dimensional C3N/WS2 vdW heterojunction for direct Z-scheme photocatalytic overall water splitting. Int J Hydrogen 2023;48:2186-99.

47. Singh A, Jain M, Bhattacharya S. MoS2 and Janus (MoSSe) based 2D van der Waals heterostructures: emerging direct Z-scheme photocatalysts. Nanoscale Adv 2021;3:2837-45.

48. Wang B, Wang X, Wang P, et al. Bilayer MoTe2/XS2 (X = Hf, Sn, Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen. Appl Surf Sci 2021;544:148842.

49. Cao M, Ni L, Wang Z, et al. DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Appl Surf Sci 2021;551:149364.

50. Zhu XT, Xu Y, Cao Y, Zou DF, Sheng W. Direct Z-scheme arsenene/HfS2 van der Waals heterojunction for overall photocatalytic water splitting: first-principles study. Appl Surf Sci 2022;574:151650.

51. Luo Q, Yin S, Sun X, Tang Y, Feng Z, Dai X. GaN/BS van der Waals heterostructure: a direct Z-scheme photocatalyst for overall water splitting. Appl Surf Sci 2023;609:155400.

52. Liu J, Shen Y, Lv L, et al. Rational design direct Z-scheme β-GeSe/HfS2 heterostructure by interfacial engineering: efficient photocatalyst for overall water splitting in the wide solar spectrum. Appl Surf Sci 2022;589:153025.

53. Cao J, Zhang X, Zhao S, Wang S, Cui J. Mechanism of photocatalytic water splitting of 2D WSeTe/XS2 (X = Hf, Sn, Zr) van der Waals heterojunctions under the interaction of vertical intrinsic electric and built-in electric field. Appl Surf Sci 2022;599:154012.

54. Zhang Y, Shen Y, Liu J, et al. Internal electric field enhanced photoelectrochemical water splitting in direct Z-scheme GeC/HfS2 heterostructure: a first-principles study. Appl Phys Lett 2023;122:043902.

55. Christopher ES, Yury G. MXenes: a tunable family of 2D carbides and nitrides. Available from: https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/organic-electronics/mxenes [Last accessed on 7 Apr 2024].

56. Lu C, Dong W, Zou Y, et al. Direct Z-scheme SnSe2/SnSe heterostructure passivated by Al2O3 for highly stable and sensitive photoelectrochemical photodetectors. ACS Appl Mater Interfaces 2023;15:6156-68.

57. Fu CF, Li X, Yang J. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron-hole recombination and photocorrosion. Chem Sci 2021;12:2863-9.

58. Liu X, Cheng P, Zhang X, et al. Enhanced solar-to-hydrogen efficiency for photocatalytic water splitting based on a polarized heterostructure: the role of intrinsic dipoles in heterostructures. J Mater Chem A 2021;9:14515-23.

59. Ju L, Tang X, Kou L. Polarization boosted catalysis: progress and outlook. Microstructures 2022;2:2022008.

60. Jalil A, Zhao T, Kanwal A, Ahmed I. Prediction of direct Z-scheme H and H-phase of MoSi2N4/MoSX (X = S, Se) van der Waals heterostructures: a promising candidate for photocatalysis. Chem Eng J 2023;470:144239.

61. Shahrokhi M, Raybaud P, Le Bahers T. 2D MoO3-xSx/MoS2 van der Waals assembly: a tunable heterojunction with attractive properties for photocatalysis. ACS Appl Mater Interfaces 2021;13:36465-74.

62. Zeng H, Zhao J, Cheng AQ, Zhang L, He Z, Chen RS. Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field. Nanotechnology 2018;29:075201.

63. Zhang S, Yan Z, Li Y, Chen Z, Zeng H. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Angewandte Chemie 2015;127:3155-8.

64. Kamal C, Ezawa M. Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B 2015;91:085423.

65. Lu Q, Zhang L, Xu T, Zhang B, Gong W. Highly efficient photocatalytic water splitting in direct Z-scheme α -In2Se3/are van der Waals heterostructures. Surfaces Interfaces 2023;36:102608.

66. Fan Y, Qi S, Li W, Zhao M. Direct Z-scheme photocatalytic CO2 conversion to solar fuels in a two-dimensional C2N/aza-CMP heterostructure. Appl Surf Sci 2021;541:148630.

67. Wang J, Yu Y, Cui J, et al. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl Catal B Environ 2022;301:120814.

68. Bian J, Zhang Z, Feng J, et al. Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst. Angew Chem Int Ed 2021;60:20906-14.

69. He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B Environ 2020;272:119006.

70. Wang Z, Cheng B, Zhang L, et al. S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chinese J Catal 2022;43:1657-66.

Microstructures
ISSN 2770-2995 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/