REFERENCES
1. Li Q, Lin K, Liu Z, et al. Chemical diversity for tailoring negative thermal expansion. Chem Rev 2022;122:8438-86.
2. Takenaka K. Negative thermal expansion materials: technological key for control of thermal expansion. Sci Technol Adv Mater 2012;13:013001.
3. Chen J, Hu L, Deng J, Xing X. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 2015;44:3522-67.
4. Hu L, Chen J, Fan L, et al. Zero thermal expansion and ferromagnetism in cubic Sc1-xMxF3 (M = Ga, Fe) over a wide temperature range. J Am Chem Soc 2014;136:13566-9.
5. Song Y, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect. Mater Horiz 2020;7:275-81.
6. Zhou H, Tao K, Chen B, et al. Low-melting metal bonded MM’X/In composite with largely enhanced mechanical property and anisotropic negative thermal expansion. Acta Mater 2022;229:117830.
7. Balestra SR, Bueno-Perez R, Hamad S, Dubbeldam D, Ruiz-Salvador AR, Calero S. Controlling thermal expansion: a metal-organic frameworks route. Chem Mater 2016;28:8296-304.
8. Zhang JP, Zhou HL, Zhou DD, Liao PQ, Chen XM. Controlling flexibility of metal-organic frameworks. Nat Sci Rev 2018;5:907-19.
9. Burtch NC, Baxter SJ, Heinen J, et al. Negative thermal expansion design strategies in a diverse series of metal-organic frameworks. Adv Funct Mater 2019;29:1904669.
10. Schneider C, Bodesheim D, Ehrenreich MG, et al. Tuning the negative thermal expansion behavior of the metal-organic framework Cu3BTC2 by retrofitting. J Am Chem Soc 2019;141:10504-9.
11. Dubbeldam D, Walton KS, Ellis DE, Snurr RQ. Exceptional negative thermal expansion in isoreticular metal-organic frameworks. Angew Chem Int Ed 2007;46:4496-9.
12. Wu Y, Kobayashi A, Halder GJ, et al. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. Angew Chem Int Ed 2008;47:8929-32.
13. Cliffe MJ, Hill JA, Murray CA, Coudert FX, Goodwin AL. Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework. Phys Chem Chem Phys 2015;17:11586-92.
14. Liu Z, Li Q, Zhu H, et al. 3D negative thermal expansion in orthorhombic MIL-68(In). Chem Commun 2018;54:5712-5.
15. Chen Z, Stroscio GD, Liu J, et al. Node distortion as a tunable mechanism for negative thermal expansion in metal-organic frameworks. J Am Chem Soc 2023;145:268-76.
16. Liu Z, Ma R, Deng J, Chen J, Xing X. Molecular packing-dependent thermal expansion behaviors in metal squarate frameworks. Chem Mater 2020;32:2893-8.
17. Liu Z, Fan L, Xing C, Wang Z. Negative thermal expansion in the noncarboxylate based metal-organic framework Cd(trz)Cl. ACS Mater Lett 2023;5:1911-5.
18. Zhou W, Wu H, Yildirim T, Simpson JR, Walker ARH. Origin of the exceptional negative thermal expansion in metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3. Phys Rev B 2008;78:054114.
19. Rimmer LH, Dove MT, Goodwin AL, Palmer DC. Acoustic phonons and negative thermal expansion in MOF-5. Phys Chem Chem Phys 2014;16:21144-52.
20. Lock N, Wu Y, Christensen M, et al. Elucidating negative thermal expansion in MOF-5. J Phys Chem C 2010;114:16181-6.
21. Goodwin AL, Chapman KW, Kepert CJ. Guest-dependent negative thermal expansion in nanoporous prussian blue analogues
22. Zhou HL, Zhang YB, Zhang JP, Chen XM. Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour. Nat Commun 2015;6:6917.
23. Auckett JE, Barkhordarian AA, Ogilvie SH, et al. Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks. Nat Commun 2018;9:4873.
24. Baxter SJ, Schneemann A, Ready AD, Wijeratne P, Wilkinson AP, Burtch NC. Tuning thermal expansion in metal-organic frameworks using a mixed linker solid solution approach. J Am Chem Soc 2019;141:12849-54.
25. Henke S, Schneemann A, Fischer RA. Massive anisotropic thermal expansion and thermo‐responsive breathing in metal-organic frameworks modulated by linker functionalization. Adv Funct Mater 2013;23:5990-6.
26. Sun HY, Meng YS, Zhao L, et al. Colossal anisotropic thermal expansion through coupling spin crossover and rhombus deformation in a hexanuclear {FeIII4FeII2} Compound. Angew Chem Int Ed 2023;62:e202302815.
27. Platero-Prats AE, Mavrandonakis A, Gallington LC, et al. Structural transitions of the metal-oxide nodes within metal-organic frameworks: on the local structures of NU-1000 and UiO-66. J Am Chem Soc 2016;138:4178-85.
28. Furukawa H, Gándara F, Zhang YB, et al. Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 2014;136:4369-81.
29. Kim H, Rao SR, Kapustin EA, et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun 2018;9:1191.
31. Xu W, Yaghi OM. Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 2020;6:1348-54.
32. Iacomi P, Formalik F, Marreiros J, et al. Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801). Chem Mater 2019;31:8413-23.
33. Dai S, Nouar F, Zhang S, Tissot A, Serre C. One-step room-temperature synthesis of metalIV carboxylate metal-organic frameworks. Angew Chem Int Ed 2021;60:4282-8.
34. Li CN, Wang SM, Tao ZP, et al. Green synthesis of MOF-801(Zr/Ce/Hf) for CO2/N2 and CO2/CH4 separation. Inorg Chem 2023;62:7853-60.
36. Yang X, Juh’as P, Farrow CL, Billinge SJL. xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis. 2015. Available from: https://arxiv.org/abs/1402.3163 [Last accessed on 12 Apr 2024].
37. Cavka JH, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 2008;130:13850-1.
38. Zhou HL, Bai J, Ye JW, et al. Thermal and gas dual-responsive behaviors of an expanded UiO-66-type porous coordination polymer. Chempluschem 2016;81:817-21.
39. Zhang X, Jiang X, Molokeev MS, Wang N, Liu Y, Lin Z. Two-dimensional negative thermal expansion in a crystal of LiBO2. Chem Mater 2022;34:4195-201.
40. Liu Z, Jiang X, Wang C, et al. Near-zero thermal expansion coordinated with geometric flexibility and π-π interaction in anisotropic [Zn8(SiO4)(m-BDC)6]n. Inorg Chem Front 2019;6:1675-9.