REFERENCES

1. Skyrme THR. A non-linear field theory. Proc R Soc Lond A 1961;260:127-38.

2. Battye RA, Sutcliffe PM. Knots as stable soliton solutions in a three-dimensional classical field theory. Phys Rev Lett 1998;81:4798.

3. Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat Nanotechnol 2013;8:152-6.

4. Tonomura A, Yu XZ, Yanagisawa K, et al. Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. Nano Lett 2012;12:1673-7.

5. Zhou Y. Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl Sci Rev 2019;6:210-2.

6. Li X, Shen L, Bai Y, et al. Bimeron clusters in chiral antiferromagnets. NPJ Comput Mater 2020;6:169.

7. Lin SZ, Saxena A, Batista CD. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys Rev B 2015;91:224407.

8. Gao Y, Yin QW, Wang Q, et al. Spontaneous (Anti)meron chains in the domain walls of van der Waals Ferromagnetic Fe5-xGeTe2. Adv Mater 2020;32:e2005228.

9. Kolesnikov AG, Stebliy ME, Samardak AS, Ognev AV. Skyrmionium - high velocity without the skyrmion Hall effect. Sci Rep 2018;8:16966.

10. Göbel B, Schäffer AF, Berakdar J, Mertig I, Parkin SSP. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device. Sci Rep 2019;9:12119.

11. Wolf D, Schneider S, Rößler UK, et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat Nanotechnol 2022;17:250-5.

12. Seki S, Suzuki M, Ishibashi M, et al. Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet. Nat Mater 2022;21:181-7.

13. Ran K, Liu Y, Guang Y, et al. Creation of a chiral bobber lattice in helimagnet-multilayer heterostructures. Phys Rev Lett 2021;126:017204.

14. Seki S, Garst M, Waizner J, et al. Propagation dynamics of spin excitations along skyrmion strings. Nat Commun 2020;11:256.

15. Zheng F, Rybakov FN, Borisov AB, et al. Experimental observation of chiral magnetic bobbers in B20-type FeGe. Nat Nanotechnol 2018;13:451-5.

16. Tang J, Wu Y, Wang W, et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat Nanotechnol 2021;16:1086-91.

17. Guang Y, Ran K, Zhang J, et al. Superposition of emergent monopole and antimonopole in CoTb thin films. Phys Rev Lett 2021;127:217201.

18. Sutcliffe P. Skyrmion knots in frustrated magnets. Phys Rev Lett 2017;118:247203.

19. Wu JS, Smalyukh II. Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals. Liq Cryst Rev 2022;10:34-68.

20. Raftrey D, Fischer P. Field-driven dynamics of magnetic hopfions. Phys Rev Lett 2021;127:257201.

21. Tai JB, Smalyukh II. Static hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures. Phys Rev Lett 2018;121:187201.

22. Wang XS, Qaiumzadeh A, Brataas A. Current-driven dynamics of magnetic hopfions. Phys Rev Lett 2019;123:147203.

23. Kleckner D, Irvine WTM. Creation and dynamics of knotted vortices. Nat Phys 2013;9:253-8.

24. Ackerman PJ, Smalyukh II. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids. Nat Mater 2017;16:426-32.

25. Tai JB, Ackerman PJ, Smalyukh II. Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals. Proc Natl Acad Sci USA 2018;115:921-6.

26. Sugic D, Droop R, Otte E, et al. Particle-like topologies in light. Nat Commun 2021;12:6785.

27. Tai JB, Wu JS, Smalyukh II. Geometric transformation and three-dimensional hopping of Hopf solitons. Nat Commun 2022;13:2986.

28. Chen BG, Ackerman PJ, Alexander GP, Kamien RD, Smalyukh II. Generating the hopf fibration experimentally in nematic liquid crystals. Phys Rev Lett 2013;110:237801.

29. Liu Y, Lake RK, Zang J. Binding a hopfion in a chiral magnet nanodisk. Phys Rev B 2018;98:174437.

30. Sutcliffe P. Hopfions in chiral magnets. J Phys A Math Theor 2018;51:375401.

31. Liu Y, Hou W, Han X, Zang J. Three-dimensional dynamics of a magnetic hopfion driven by spin transfer torque. Phys Rev Lett 2020;124:127204.

32. Kent N, Reynolds N, Raftrey D, et al. Creation and observation of Hopfions in magnetic multilayer systems. Nat Commun 2021;12:1562.

33. Yu X, Liu Y, Iakoubovskii KV, et al. Realization and current-driven dynamics of fractional hopfions and their ensembles in a helimagnet FeGe. Adv Mater 2023;35:e2210646.

34. Li S, Xia J, Shen L, Zhang X, Ezawa M, Zhou Y. Mutual conversion between a magnetic Néel hopfion and a Néel toron. Phys Rev B 2022;105:174407.

35. Zhang X, Xia J, Zhou Y, et al. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys Rev B 2016;94:094420.

36. Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-sanchez F, Van Waeyenberge B. The design and verification of MuMax3. AIP Adv 2014;4:107133.

37. Zhu J, Wu Y, Hu Q, et al. Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets. Sci China Phys Mech Astron 2021;64:227511.

38. Iwasaki J, Mochizuki M, Nagaosa N. Current-induced skyrmion dynamics in constricted geometries. Nat Nanotechnol 2013;8:742-7.

39. Mccray AR, Cote T, Li Y, Petford-long AK, Phatak C. Understanding complex magnetic spin textures with simulation-assisted lorentz transmission electron microscopy. Phys Rev Appl 2021;15:044025.

40. Zheng F, Li H, Wang S, et al. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk. Phys Rev Lett 2017;119:197205.

41. Hu Q, Lyu B, Tang J, Kong L, Du H, Wang W. Unidirectional current-driven toron motion in a cylindrical nanowire. Appl Phys Lett 2021;118:022404.

42. Zhao H, Malomed BA, Smalyukh II. Topological solitonic macromolecules. Nat Commun 2023;14:4581.

43. Niitsu K, Liu Y, Booth AC. Geometrically stabilized skyrmionic vortex in FeGe tetrahedral nanoparticles. Nat Mater 2022;21:305-10.

44. Liu Y, Lake RK, Zang J. Shape dependent resonant modes of skyrmions in magnetic nanodisks. J Magn Magn Mater 2018;455:9-13.

45. Xia J, Zhang X, Ezawa M, Shao Q, Liu X, Zhou Y. Dynamics of an elliptical ferromagnetic skyrmion driven by the spin-orbit torque. Appl Phys Lett 2020;116:022407.

46. Cui B, Yu D, Shao Z, et al. Néel-type elliptical skyrmions in a laterally asymmetric magnetic multilayer. Adv Mater 2021;33:e2006924.

47. Jiang W, Upadhyaya P, Zhang W, et al. Magnetism. Blowing magnetic skyrmion bubbles. Science 2015;349:283-6.

48. He M, Li G, Zhu Z, et al. Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers. Phys Rev B 2018;97:174419.

49. Yu XZ, Kanazawa N, Onose Y, et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat Mater 2011;10:106-9.

50. Peng L, Karube K, Taguchi Y, Nagaosa N, Tokura Y, Yu X. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat Commun 2021;12:6797.

51. Wu Y, Jiang J, Tang J. Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets. Chinese Phys B 2022;31:077504.

52. Song D, Li ZA, Caron J, et al. Quantification of magnetic surface and edge states in an FeGe nanostripe by off-axis electron holography. Phys Rev Lett 2018;120:167204.

53. Peng L, Iakoubovskii KV, Karube K, Taguchi Y, Tokura Y, Yu X. Formation and control of zero-field antiskyrmions in confining geometries. Adv Sci 2022;9:e2202950.

54. Jena J, Göbel B, Hirosawa T, et al. Observation of fractional spin textures in a Heusler material. Nat Commun 2022;13:2348.

55. Hertel R, Gliga S, Fähnle M, Schneider CM. Ultrafast nanomagnetic toggle switching of vortex cores. Phys Rev Lett 2007;98:117201.

56. Peng L, Takagi R, Koshibae W, et al. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat Nanotechnol 2020;15:181-6.

57. Yu XZ, Shibata K, Koshibae W, et al. Thermally activated helicity reversals of skyrmions. Phys Rev B 2016;93:134417.

58. Vakili H, Sakib MN, Ganguly S, et al. Temporal memory with magnetic racetracks. IEEE J Explor Solid State 2020;6:107-15.

59. Song KM, Jeong J, Pan B, et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat Electron 2020;3:148-55.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/