REFERENCES
1. Grima JN, Caruana-Gauci R. Mechanical metamaterials: materials that push back. Nat Mater 2012;11:565-6.
3. Baughman RH, Stafstrom S, Cui C, Dantas SO. Materials with negative compressibilities in one or more dimensions. Science 1998;279:1522-4.
5. Jiang X, Molokeev MS, Dong L, et al. Anomalous mechanical materials squeezing three-dimensional volume compressibility into one dimension. Nat Commun 2020;11:5593.
6. Lu Y, Yan H, Huang E, Chen B. Persistent negative compressibility coupled to optical modulation in empty-perovskite TiOF2. J Phys Chem C 2021;125:8869-75.
7. Yu Y, Zeng Q, Chen Y, Jiang L, Wang K, Zou B. Extraordinarily persistent zero linear compressibility in metal-organic framework MIL-122(In). ACS Mater Lett 2020;2:519-23.
8. Rejnhardt P, Zaręba JK, Katrusiak A, Daszkiewicz M. Deuteration-enhanced negative thermal expansion and negative area compressibility in a three-dimensional hydrogen bonded network. Chem Mater 2023;35:5160-7.
9. Cairns AB, Catafesta J, Levelut C, et al. Giant negative linear compressibility in zinc dicyanoaurate. Nat Mater 2013;12:212-6.
10. Zhao Y, Fan C, Pei C, et al. Colossal negative linear compressibility in porous organic salts. J Am Chem Soc 2020;142:3593-9.
11. Jiang D, Wen T, Song H, et al. Intrinsic zero-linear and zero-area compressibilities over an ultrawide pressure range within a gear-spring structure. CCS Chem 2022;4:3246-53.
12. Zeng Q, Wang K, Zou B. Near zero area compressibility in a perovskite-like metal-organic frameworks [C(NH2)3][Cd(HCOO)3]. ACS Appl Mater Interfaces 2018;10:23481-4.
13. Sun ME, Wang Y, Wang F, et al. Chirality-dependent structural transformation in chiral 2D perovskites under high pressure. J Am Chem Soc 2023;145:8908-16.
14. Qiu W, Zeng Q, Li C, Hao J, Li Y. Theoretical investigation of zero linear compressibility on metal squarates MC4O4 (M = Pb and Ba). J Phys Chem C 2023;127:9957-63.
15. Mączka M, Sobczak S, Ratajczyk P, et al. Pressure-driven phase transition in two-dimensional perovskite MHy2PbBr4. Chem Mater 2022;34:7867-77.
16. Jiang X, Luo S, Kang L, et al. Isotropic negative area compressibility over large pressure range in potassium beryllium fluoroborate and its potential applications in deep ultraviolet region. Adv Mater 2015;27:4851-7.
17. Zhang Y, Yao M, Du M, et al. Negative volume compressibility in Sc3N@C80-cubane cocrystal with charge transfer. J Am Chem Soc 2020;142:7584-90.
18. Tortora M, Zajdel P, Lowe AR, et al. Giant negative compressibility by liquid intrusion into superhydrophobic flexible nanoporous frameworks. Nano Lett 2021;21:2848-53.
19. Occelli F, Loubeyre P, LeToullec R. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat Mater 2003;2:151-4.
20. Jiang D, Wen T, Guo Y, et al. Reentrant negative linear compressibility in MIL-53(Al) over an ultrawide pressure range. Chem Mater 2022;34:2764-70.
21. Ghosh PS, Ponomareva I. Negative linear compressibility in organic-inorganic hybrid perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co). J Phys Chem Lett 2022;13:3143-9.
22. Hodgson SA, Adamson J, Hunt SJ, et al. Negative area compressibility in silver(I) tricyanomethanide. Chem Commun 2014;50:5264-6.
23. Goodwin AL, Keen DA, Tucker MG. Large negative linear compressibility of Ag3[Co(CN)6]. Proc Natl Acad Sci USA 2008;105:18708-13.
24. Kamali K, Ravi C, Ravindran TR, Sarguna RM, Sairam TN, Kaur G. Linear compressibility and thermal expansion of
25. Cai W, Katrusiak A. Conformationally assisted negative area compression in methyl benzoate. J Phys Chem C 2013;117:21460-5.
26. Jiang X, Yang Y, Molokeev MS, et al. Zero linear compressibility in nondense borates with a “Lu-Ban Stool”-like structure. Adv Mater 2018;30:e1801313.
27. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Kristallogr 2005;220:567-70.
28. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P. Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 2001;73:515.
29. Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 1981;23:5048.
30. Ceperley DM, Alder BJ. Ground-state of the electron-gas by a stochastic method. Phys Rev Lett 1980;45:566.
31. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B Condens Matter 1990;41:7892.
32. Pfrommer BG, Côté M, Louie SG, Cohen ML. Relaxation of crystals with the quasi-newton method. J Comput Phys 1997;131:233-40.
33. Cliffe MJ, Goodwin AL. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination. J Appl Cryst 2012;45:1321-9.
35. Jansen M, Brachtel G. Ag3BO3-II, eine neue form von silber(I)-orthoborat. Z Anorg Allg Chem 1982;489:42-6.