REFERENCES

1. Li G, Rahim MZ, Pan W, Wen C, Ding S. The manufacturing and the application of polycrystalline diamond tools - a comprehensive review. J Manuf Process 2020;56:400-16.

2. Sahin Y, Motorcu AR. Surface roughness model in machining hardened steel with cubic boron nitride cutting tool. Int J Refract Hard Mater 2008;26:84-90.

3. Wada T, Hanyu H. Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel. IOP Conf Ser Mater Sci Eng 2017;264:012017.

4. Sugihara T, Nishimoto Y, Enomoto T. Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of inconel 718. Precis Eng 2017;48:75-82.

5. Twardowski P, Legutko S, Krolczyk GM, Hloch S. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling. Adv Mech Eng 2015;7:1687814015590216.

6. Sahin Y. Comparison of tool life between ceramic and cubic boron nitride (CBN) cutting tools when machining hardened steels. J Mater Process Technol 2009;209:3478-89.

7. Yallese MA, Chaoui K, Zeghib N, Boulanouar L, Rigal J. Hard machining of hardened bearing steel using cubic boron nitride tool. J Mater Process Technol 2009;209:1092-104.

8. Gastel M, Konetschny C, Reuter U, et al. Investigation of the wear mechanism of cubic boron nitride tools used for the machining of compacted graphite iron and grey cast iron. Int J R Refract Hard Mater 2000;18:287-96.

9. Nagakubo A, Ogi H, Sumiya H, Hirao M. Elasticity and hardness of nano-polycrystalline boron nitrides: the apparent Hall-Petch effect. Appl Phys Lett 2014;105:081906.

10. Zhao Z, Xu B, Tian Y. Recent advances in superhard materials. Annu Rev Mater Res 2016;46:383-406.

11. Harris TK, Brookes EJ, Taylor CJ. The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials. Int J R Refract Hard Mater 2004;22:105-10.

12. Zunger A, Freeman AJ. Ab initio self-consistent study of the electronic structure and properties of cubic boron nitride. Phys Rev B 1978;17:2030-42.

13. Solozhenko VL, Kurakevych OO, Le Godec Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv Mater 2012;24:1540-4.

14. Zhao M, Kou Z, Zhang Y, et al. Superhard transparent polycrystalline cubic boron nitride. Appl Phys Lett 2021;118:151901.

15. Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science 2004;304:422-6.

16. Wen B, Xu B, Wang Y, et al. Continuous strengthening in nanotwinned diamond. NPJ Comput Mater 2019;5:117.

17. Tian Y, Xu B, Yu D, et al. Ultrahard nanotwinned cubic boron nitride. Nature 2013;493:385-8.

18. Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH. Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 2000;61:3877-88.

19. Sumiya H, Sakano F, Tatsumi N. Distribution of internal strain and fracture strength in various single-crystal diamonds. Diam Relat Mater 2023;134:109781.

20. Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Mater 2007;55:4067-109.

21. Liu Y, Zhou Y, Jia D, Yang Z, Li D, Liu B. Unveiling structural features and mechanical properties of amorphous Si2BC3N by density functional theory. J Mater Sci Technol 2023;139:103-12.

22. Wang XJ, Lu YZ, Lu X, et al. Elastic criterion for shear-banding instability in amorphous solids. Phys Rev E 2022;105:045003.

23. Dasgupta R, Hentschel HG, Procaccia I. Microscopic mechanism of shear bands in amorphous solids. Phys Rev Lett 2012;109:255502.

24. Turnbull D, Cohen MH. Free-volume model of the amorphous phase: glass transition. J Chem Phys 1961;34:120-5.

25. Abrosimova G, Chirkova V, Pershina E, Volkov N, Sholin I, Aronin A. The effect of free volume on the crystallization of Al87Ni8Gd5 amorphous alloy. Metals 2022;12:332.

26. Zhang S, Li Z, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev 2022;9:nwab140.

27. Li B, Ying P, Gao Y, et al. Heterogeneous diamond-cBN composites with superb toughness and hardness. Nano Lett 2022;22:4979-84.

28. Liu Y, He D, Kou Z, et al. Hardness and thermal stability enhancement of polycrystalline diamond compact through additive hexagonal boron nitride. Scr Mater 2018;149:1-5.

29. Pacella M, Axinte DA, Butler-smith PW, Shipway P, Daine M, Wort C. An assessment of the wear characteristics of microcutting arrays produced from polycrystalline diamond and cubic boron nitride composites. J Manuf Sci Eng 2016;138:021001.

30. Yin X, Kou Z, Wang Z, et al. Micro-sized polycrystalline cubic boron nitride with properties comparable to nanocrystalline counterparts. Ceram Int 2020;46:8806-10.

31. Xiang X, Guo Z, Chen Y, et al. Discovery of metastable W3P single crystals with high hardness and superconductivity. Inorg Chem 2023;62:19279-87.

32. Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014;510:250-3.

33. Solozhenko VL, Dub SN, Novikov NV. Mechanical properties of cubic BC2N, a new superhard phase. Diam Relat Mater 2001;10:2228-31.

34. Meng Y, Mao HK, Eng PJ, et al. The formation of sp3 bonding in compressed BN. Nat Mater 2004;3:111-4.

35. Bundy FP, Wentorf RH Jr. Direct transformation of hexagonal boron nitride to denser forms. J Chem Phys 1963;38:1144-9.

36. Hu M, He J, Zhao Z, et al. Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network. Sci Adv 2017;3:e1603213.

37. Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 2021;599:599-604.

38. Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature 2021;599:605-10.

39. Liu Y, Zhan GD, Wang Q, et al. Hardness of polycrystalline wurtzite boron nitride (wBN) compacts. Sci Rep 2019;9:10215.

40. Matsumoto M, Huang H, Harada H, Kakimoto K, Yan J. On the phase transformation of single-crystal 4H-SiC during nanoindentation. J Phys D Appl Phys 2017;50:265303.

41. Guicciardi S, Melandri C, Monteverde FT. Characterization of pop-in phenomena and indentation modulus in a polycrystalline ZrB2 ceramic. J Eur Ceram Soc 2010;30:1027-34.

42. Cai X, Xu Y, Zhong L, Liu M. Fracture toughness of WC-Fe cermet in W-WC-Fe composite by nanoindentation. J Alloys Compd 2017;728:788-96.

43. Gibson RF. A review of recent research on nanoindentation of polymer composites and their constituents. Compos Sci Technol 2014;105:51-65.

44. Langenhorst F, Solozhenko VL. ATEM-EELS study of new diamond-like phases in the B-C-N system. Phys Chem Chem Phys 2002;4:5183-8.

45. Egerton RF, Malac M. EELS in the TEM. J Electron Spectrosc Relat Phenomena 2005;143:43-50.

46. Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K. Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 2006;34:257-60.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/