REFERENCES

1. Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004;432:84-7.

2. Wang D, Wang G, Murakami S, et al. BiFeO3-BaTiO3: a new generation of lead-free electroceramics. J Adv Dielect 2018;8:1830004.

3. Murakami S, Wang D, Mostaed A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J Am Ceram Soc 2018;101:5428-42.

4. Panda PK, Sahoo B. PZT to Lead Free Piezo Ceramics: a review. Ferroelectrics 2015;474:128-43.

5. Souza-Araujo J, Hussey NE, Hauser-Davis RA, Rosa AH, Lima MO, Giarrizzo T. Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. Chemosphere 2022;301:134575.

6. McFarland MJ, Hauer ME, Reuben A. Half of US population exposed to adverse lead levels in early childhood. Proc Natl Acad Sci USA 2022;119:e2118631119.

7. Liu K, Zhang Y, Marwat MA, et al. Large electrostrain in low-temperature sintered NBT-BT-0.025FN incipient piezoceramics. J Am Ceram Soc 2020;103:3739-47.

8. Zhang Y, Liu X, Wang G, et al. Enhanced mechanical energy harvesting capability in sodium bismuth titanate based lead-free piezoelectric. J Alloys Compd 2020;825:154020.

9. Wang D, Hussain F, Khesro A, et al. Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J Am Ceram Soc 2017;100:627-37.

10. Khesro A, Wang D, Hussain F, et al. Temperature dependent piezoelectric properties of lead-free (1-x)K0.6Na0.4NbO3-xBiFeO3 ceramics. Front Mater 2020;7:140.

11. Zhang S, Kounga AB, Aulbach E, Ehrenberg H, Rödel J. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl Phys Lett 2007;91:112906.

12. Zheng T, Wu J, Xiao D, Zhu J. Giant d33 in nonstoichiometric (K,Na)NbO3-based lead-free ceramics. Scr Mater 2015;94:25-7.

13. Shi H, Chen J, Wang R, Dong S. Full set of material constants of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary. J Alloys Compd 2016;655:290-5.

14. Bai W, Li P, Li L, Zhang J, Shen B, Zhai J. Structure evolution and large strain response in BNT-BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3. J Alloys Compd 2015;649:772-81.

15. Hiruma Y, Nagata H, Takenaka T. Formation of morphotropic phase boundary and electrical properties of (Bi1/2Na1/2)TiO3-Ba(Al1/2Nb1/2)O3 solid solution ceramics. Jpn J Appl Phys 2009;48:09KC08.

16. Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J. Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress. Acta Mater 2013;61:1350-8.

17. Li T, Lou X, Ke X, et al. Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 2017;128:337-44.

18. Wang G, Hu T, Zhu W, et al. Multiple local symmetries result in a common average polar axis in high-strain BiFeO3-based ceramics. Phys Rev Lett 2023;130:076801.

19. Lu Z, Wang G, Li L, et al. In situ poling X-ray diffraction studies of lead-free BiFeO3-SrTiO3 ceramics. Mater Today Phys 2021;19:100426.

20. Wang G, Fan Z, Murakami S, et al. Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics. J Mater Chem A 2019;7:21254-63.

21. Li Z, Hou Z, Song W, et al. Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles. Mater Lett 2016;175:207-11.

22. Wang D, Wang M, Liu F, et al. Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram Int 2015;41:8768-72.

23. Sono N, Kinoshita Y, Kida N, Ito T, Okamoto H, Miyamoto T. Terahertz-field-induced changes of electronic states associated with a polarization modulation in BiFeO3. J Phys Soc Jpn 2021;90:033703.

24. Huang S, Hong F, Xia Z, et al. Multiferroic behavior from synergetic response of multiple ordering parameters in BiFeO3 single crystal under high magnetic field up to 50 tesla. J Appl Phys 2020;127:044101.

25. Białek M, Ito T, Rønnow H, Ansermet J. Terahertz-optical properties of a bismuth ferrite single crystal. Phys Rev B 2019;99:064429.

26. Blázquez Martínez A, Grysan P, Girod S, et al. Strain engineering of the electro-optic effect in polycrystalline BiFeO3 films [invited]. Opt Mater Express 2023;13:2061-70.

27. Yi J, Liu L, Shu L, Huang Y, Li JF. Outstanding ferroelectricity in Sol-gel-derived polycrystalline BiFeO3 films within a wide thickness range. ACS Appl Mater Interfaces 2022;14:21696-704.

28. Zhou Y, Wang C, Tian S, et al. Switchable ferroelectric diode and photovoltaic effects in polycrystalline BiFeO3 thin films grown on transparent substrates. Thin Solid Films 2020;698:137851.

29. Önal F, Maksutoglu M, Zarbali M, Mikailzade F. Magnetization and magnetic resonance in sol-gel derived polycrystalline BiFeO3 film. J Magn Magn Mater 2019;477:92-8.

30. Song H, Son JY. Physical properties of Cr-doped epitaxial BiFeO3 thin films influenced by ferroelectric domain structures. J Phys Chem Solids 2023;177:111306.

31. Ding J, Guo R, Hu J, et al. Switchable ferroelectric photovoltaic in the low bandgap cobalt-substituted BiFeO3 epitaxial thin films. Appl Surf Sci 2022;606:154898.

32. Lee JY, Anoop G, Unithrattil S, et al. The role of intermediate S-polymorph towards high piezoelectricity in La-doped BiFeO3 epitaxial thin films. Acta Mater 2021;207:116683.

33. Pei W, Chen J, You D, et al. Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Appl Surf Sci 2020;530:147194.

34. Zhou Z, Sun W, Liao Z, Ning S, Zhu J, Li J. Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films. J Mater 2018;4:27-34.

35. Lahmar A, Zhao K, Habouti S, Dietze M, Solterbeck C, Es-souni M. Off-stoichiometry effects on BiFeO3 thin films. Solid State Ionics 2011;202:1-5.

36. Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003;299:1719-22.

37. Rojac T, Bencan A, Malic B, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc 2014;97:1993-2011.

38. Rojac T, Kosec M, Budic B, Setter N, Damjanovic D. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J Appl Phys 2010;108:074107.

39. Ismailzade IH, Ismailov RM, Alekberov AI, Salaev FM. Investigation of the magnetoelectric (ME)H effect in solid solutions of the systems BiFeO3-BaTiO3 and BiFeO3-PbTiO3 . Phys Status Solid 1981;68:K81-5.

40. Wei Y, Wang X, Zhu J, Wang X, Jia J, Damjanovic D. Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics. J Am Ceram Soc 2013;96:3163-8.

41. Habib M, Lee MH, Kim DJ, et al. Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3-BaTiO3 ceramics. Ceram Int 2020;46:22239-52.

42. Kumar MM, Srinivas A, Suryanarayana SV. Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 2000;87:855-62.

43. Zheng T, Ding Y, Wu J. Bi nonstoichiometry and composition engineering in (1-x)Bi1+yFeO3+3y/2-xBaTiO3 ceramics. RSC Adv 2016;6:90831-9.

44. Yang L, Chen C, Jiang X, Huang X, Nie X, Chang S. Enhanced ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 lead-free ceramics by simultaneous optimization of Bi compensation and sintering conditions. Ceram Int 2022;48:12866-74.

45. Yi W, Lu Z, Liu X, et al. Excellent piezoelectric performance of Bi-compensated 0.69BiFeO3-0.31BaTiO3 lead-free piezoceramics. J Mater Sci Mater Electron 2021;32:22637-44.

46. Zhang G, Dai J, Lu Y. Phase structure and electrical properties of (1-x)Bi1+yFeO3-xBaTiO3 lead-free ceramics with different Bi contents. J Mater Sci Mater Electron 2021;32:10289-98.

47. Ahmed T, Khan SA, Bae J, et al. Role of Bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics. Solid State Sci 2021;114:106562.

48. Xun B, Wang N, Zhang B, et al. Enhanced piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation. Ceram Int 2019;45:24382-91.

49. Jian J, Peng R, Fu D, Chen J, Cheng J. Structure and enhanced electrical properties of high-temperature BiFeO3-PbTiO3-BaZrO3 ceramics with bismuth excess. Ceram Int 2018;44:21774-8.

50. Zhu L, Zhang B, Li S, Zhao G. Large piezoelectric responses of Bi(Fe,Mg,Ti)O3-BaTiO3 lead-free piezoceramics near the morphotropic phase boundary. J Alloys Compd 2017;727:382-9.

51. Chen J, Cheng J. Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content. J Alloys Compd 2014;589:115-9.

52. Zhou C, Yang H, Zhou Q, Chen G, Li W, Wang H. Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3-BaTiO3 piezoelectric ceramics. J Mater Sci Mater Electron 2013;24:1685-9.

53. Murakami S, Ahmed NTAF, Wang D, Feteira A, Sinclair DC, Reaney IM. Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J Eur Ceram Soc 2018;38:4220-31.

54. Calisir I, Hall DA. Chemical heterogeneity and approaches to its control in BiFeO3-BaTiO3 lead-free ferroelectrics. J Mater Chem C 2018;6:134-46.

55. Wang D, Fan Z, Li W, et al. High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics. ACS Appl Energy Mater 2018;1:4403-12.

56. Calisir I, Amirov AA, Kleppe AK, Hall DA. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem A 2018;6:5378-97.

57. Lu Z, Wang G, Bao W, et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ Sci 2020;13:2938-48.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/