REFERENCES
1. Bassiri-Gharb N, Fujii I, Hong E, Trolier-McKinstry S, Taylor DV, Damjanovic D. Domain wall contributions to the properties of piezoelectric thin films. J Electroceram 2007;19:49-67.
3. Li S, Bismayer U, Ding X, Salje EKH. Ferroelastic shear bands in Pb3(PO4)2. Appl Phys Lett 2016;108:022901.
4. Lu G, Li S, Ding X, Sun J, Salje EKH. Electrically driven ferroelastic domain walls, domain wall interactions, and moving needle domains. Phys Rev Mater 2019;3:114405.
5. Nataf GF, Salje EKH. Avalanches in ferroelectric, ferroelastic and coelastic materials: phase transition, domain switching and propagation. Ferroelectrics 2020;569:82-107.
6. He X, Li S, Ding X, Sun J, Kustov S, Salje EK. Internal friction in complex ferroelastic twin patterns. Acta Mater 2022;228:117787.
7. Lu G, Li S, Ding X, Sun J, Salje EKH. Enhanced piezoelectricity in twinned ferroelastics with nanocavities. Phys Rev Mater 2020;4:074410.
8. Salje EKH. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 2010;11:940-50.
10. Nataf GF, Guennou M, Gregg JM, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys 2020;2:634-48.
11. Meier D, Selbach SM. Ferroelectric domain walls for nanotechnology. Nat Rev Mater 2022;7:157-73.
12. Gonnissen J, Batuk D, Nataf GF, et al. Direct observation of ferroelectric domain walls in LiNbO3: wall-meanders, kinks, and local electric charges. Adv Funct Mater 2016;26:7599-604.
13. Shur VY, Pelegova EV, Turygin AP, Kosobokov MS, Alikin YM. Forward growth of ferroelectric domains with charged domain walls. local switching on non-polar cuts. J Appl Phys 2021;129:044103.
14. Gopalan V, Dierolf V, Scrymgeour DA. Defect-domain wall interactions in trigonal ferroelectrics. Annu Rev Mater Res 2007;37:449-89.
15. Zhang L, Li S, Ding X, Sun J, Salje EKH. Statistical analysis of emission, interaction and annihilation of phonons by kink motion in ferroelastic materials. Appl Phys Lett 2020;116:102902.
16. Dong G, Li S, Yao M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019;366:475-9.
17. Condurache O, Dražić G, Sakamoto N, Rojac T, Benčan A. Atomically resolved structure of step-like uncharged and charged domain walls in polycrystalline BiFeO3. J Appl Phys 2021;129:054102.
18. Simons H, Haugen AB, Jakobsen AC, et al. Long-range symmetry breaking in embedded ferroelectrics. Nat Mater 2018;17:814-9.
19. Jia C, Mi S, Urban K, Vrejoiu I, Alexe M, Hesse D. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 2008;7:57-61.
20. Nataf GF, Aktas O, Granzow T, Salje EKH. Influence of defects and domain walls on dielectric and mechanical resonances in LiNbO3. J Phys Condens Matter 2016;28:015901.
21. Miller RC, Weinreich G. Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys Rev 1960;117:1460.
22. Shin Y, Grinberg I, Chen I, Rappe AM. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 2007;449:881-4.
23. Maerten L, Bojahr A, Gohlke M, Rössle M, Bargheer M. Coupling of GHz phonons to ferroelastic domain walls in SrTiO3. Phys Rev Lett 2015;114:047401.
24. Anbusathaiah V, Nagarajan V, Aggarwal S. Nanoscale polarization relaxation kinetics in polycrystalline ferroelectric thin films. J Appl Phys 2007;101:084104.
25. Casals B, Nataf GF, Salje EKH. Avalanche criticality during ferroelectric/ferroelastic switching. Nat Commun 2021;12:345.
26. Lu G, Li S, Ding X, Sun J, Salje EKH. Ferroelectric switching in ferroelastic materials with rough surfaces. Sci Rep 2019;9:15834.
27. Salje EKH, Wang X, Ding X, Scott JF. Ultrafast switching in avalanche-driven ferroelectrics by supersonic kink movements. Adv Funct Mater 2017;27:1700367.
28. Salje EKH, Ishibashi Y. Mesoscopic structures in ferroelastic crystals: needle twins and right-angled domains. J Phys Condens Matter 1996;8:8477.
29. Lee K, Baik S. Ferroelastic domain structure and switching in epitaxial ferroelectric thin films. Annu Rev Mater Res 2006;36:81-116.
30. Lu G, Ding X, Sun J, Salje EKH. Wall-wall and kink-kink interactions in ferroelastic materials. Phys Rev B 2022;106:144105.
31. Shilkrot LE, Srolovitz DJ. Elastic field of a surface step: atomistic simulations and anisotropic elastic theory. Phys Rev B 1996;53:11120.
32. Andreev AF, Kosevich YK. Capillary phenomena in the theory of elasticity. J Exp Theor Phys 1981;54:761. Available from: http://jetp.ras.ru/cgi-bin/e/index/e/54/4/p761?a=list [Last accessed on 9 August 2023]
33. Pertsev NA, Novak J, Salje EKH. Long-range elastic interactions and equilibrium shapes of curved ferroelastic domain walls in crystals. Philos Mag A 2000;80:2201-13.
34. Salje EKH, Ding X, Zhao Z, Lookman T, Saxena A. Thermally activated avalanches: jamming and the progression of needle domains. Phys Rev B 2011;83:104109.
35. Lu G, Li S, Ding X, Salje EKH. Piezoelectricity and electrostriction in ferroelastic materials with polar twin boundaries and domain junctions. Appl Phys Lett 2019;114:202901.
36. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 2008;108:845-910.
37. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984;81:511-9.
38. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model Simul Mater Sci Eng 2010;18:015012.
39. Shima H, Umeno Y, Sumigawa T. Analytic formulation of elastic field around edge dislocation adjacent to slanted free surface. R Soc Open Sci 2022;9:220151.
41. Nunes RW, Bennetto J, Vanderbilt D. Atomic structure of dislocation kinks in silicon. Phys Rev B 1998;57:10388.
42. He X, Li S, Ding X, Sun J, Selbach SM, Salje EK. The interaction between vacancies and twin walls, junctions, and kinks, and their mechanical properties in ferroelastic materials. Acta Mater 2019;178:26-35.
44. Conti S, Salje EKH. Surface structure of ferroelastic domain walls: a continuum elasticity approach. J Phys Condens Matter 2001;13:L847-54.