REFERENCES
1. Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P. Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristallogr 2010;225:103-9.
2. Kobler A, Kübel C. Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM). Beilstein J Nanotechnol 2018;9:602-7.
3. Rauch E, Véron M. Automated crystal orientation and phase mapping in TEM. Mater Charact 2014;98:1-9.
4. Zhao D, Patel A, Barbosa A, et al. A reference-area-free strain mapping method using precession electron diffraction data. Ultramicroscopy 2023;247:113700.
5. Ozdol VB, Gammer C, Jin XG, et al. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl Phys Lett 2015;106:253107.
6. Rouviere J, Béché A, Martin Y, Denneulin T, Cooper D. Improved strain precision with high spatial resolution using nanobeam precession electron diffraction. Appl Phys Lett 2013;103:241913.
7. Yadav D, Zhao D, Baldwin JK, Devaraj A, Demkowicz MJ, Xie KY. Persistence of crystal orientations across sub-micron-scale “super-grains” in self-organized Cu-W nanocomposites. Scr Mater 2021;194:113677.
8. Kobler A, Kübel C. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM. Ultramicroscopy 2017;173:84-94.
9. Mompiou F, Legros M, Boé A, Coulombier M, Raskin J, Pardoen T. Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: an in situ TEM study. Acta Materialia 2013;61:205-16.
10. Kobler A, Kashiwar A, Hahn H, Kübel C. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 2013;128:68-81.
11. Rottmann PF, Hemker KJ. Experimental observations of twin formation during thermal annealing of nanocrystalline copper films using orientation mapping. Scr Mater 2017;141:76-9.
12. Mompiou F, Legros M. Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films. Scr Mater 2015;99:5-8.
13. Ma X, Zhao D, Yadav S, Sagapuram D, Xie KY. Grain-subdivision-dominated microstructure evolution in shear bands at high rates. Mater Res Lett 2020;8:328-34.
14. Xiang S, Ma L, Yang B, et al. Tuning the deformation mechanisms of boron carbide via silicon doping. Sci Adv 2019;5:eaay0352.
15. Dong J, Umale T, Young B, Karaman I, Xie KY. Structure and substructure characterization of solution-treated Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Scr Mater 2022;219:114888.
16. Hansen MH, Wang AL, Dong J,et al. Crystallographic variant mapping using precession electron diffraction data. Microstructures 2023;3:2023029.
17. Portillo J, Rauch EF, Nicolopoulos S, Gemmi M, Bultreys D. Precession electron diffraction assisted orientation mapping in the transmission electron microscope. Mater Sci Forum 2010;644:1-7.
18. Wu G, Zaefferer S. Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 2009;109:1317-25.
19. Williams DB, Carter CB . Transmission electron microscopy: basics, diffraction, imaging, and spectrometry. Berlin: Springer; 2009.
20. Bergh T, Johnstone DN, Crout P, et al. Nanocrystal segmentation in scanning precession electron diffraction data. J Microsc 2020;279:158-67.
21. Folastre N, Cao J, Oney G, et al. Adaptative Diffraction image registration for 4D-STEM to optimize ACOM pattern matching. Avaliable from: https://arxiv.org/abs/2305.02124 [Last accessed on 5 Sep 2023].
22. Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Sys 2004;38:35-44.
23. Pizer SM, Amburn EP, Austin JD, et al. Adaptive histogram equalization and its variations. Comput Vis Grap Image Process 1987;39:355-68.
24. Zuiderveld K. VIII.5. - Contrast limited adaptive histogram equalization. In: Heckbert PS, editor. Graphics gems IV. US: Academic Press Professional; 1994. pp. 474-85.
25. Ma X, Higgins W, Liang Z, Zhao D, Pharr GM, Xie KY. Exploring the origins of the indentation size effect at submicron scales. Proc Natl Acad Sci USA 2021;118.
26. Gonzalez RC. Digital image processing. London: Pearson; 2009.
27. Obara T, Yoshinga H, Morozumi S. {112̄2}〈1123〉 slip system in magnesium. Acta Metallurgica 1973;21:845-53.
28. Xie KY, Reddy KM, Ma L, Caffee A, Chen M, Hemker KJ. Experimental observations of the mechanisms associated with the high hardening and low strain to failure of magnesium. Materialia 2019;8:100504.
29. Barnett M. Twinning and the ductility of magnesium alloys: part I: “Tension” twins. Mater Sci Eng A 2007;464:1-7.
30. Shin J, Kim S, Ha T, Oh K, Choi I, Han H. Nanoindentation study for deformation twinning of magnesium single crystal. Scr Mater 2013;68:483-6.