REFERENCES
1. Chu B, Zhou X, Ren K, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006;313:334-6.
2. Yao K, Chen S, Rahimabady M, et al. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans Ultrason Ferroelectr Freq Control 2011;58:1968-74.
3. Sigman J, Brennecka GL, Clem PG, Tuttle BA. Fabrication of perovskite-based high-value integrated capacitors by chemical solution deposition. J Am Ceram Soc 2008;91:1851-7.
4. Dai L, Lin F, Zhu Z, Li J. Electrical characteristics of high energy density multilayer ceramic capacitor for pulse power application. IEEE Trans Magn 2005;41:281-4.
5. Chen XF, Dong XL, Wang GS, Cao F, Wang YL. Doped Pb(Zr,Sn,Ti)O3 slim-loop ferroelectric ceramics for high-power pulse capacitors application. Ferroelectrics 2008;363:56-63.
6. Zhu L, Wang Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 2012;45:2937-54.
7. Wang Y, Zhou X, Chen Q, Chu B, Zhang Q. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans Dielect Electr Insul 2010;17:1036-42.
8. Kim Y, Kathaperumal M, Smith OL, et al. High-energy-density sol-gel thin film based on neat 2-cyanoethyltrimethoxysilane. ACS Appl Mater Interfaces 2013;5:1544-7.
9. Ouyang J, Yang SY, Chen L, Ramesh R, Roytburd AL. Orientation dependence of the converse piezoelectric constantsfor epitaxial single domain ferroelectric films. Appl Phys Lett 2004;85:278-80.
10. Wang J, Su Y, Wang B, Ouyang J, Ren Y, Chen L. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano Energy 2020;72:104665.
11. Niu M, Zhu H, Wang Y, et al. Integration-friendly, chemically stoichiometric BiFeO3 films with a piezoelectric performance challenging that of PZT. ACS Appl Mater Interfaces 2020;12:33899-907.
12. Su Y, Ouyang J, Zhao YY. Nanograins in ferroelectric films. In: Ouyang J, editor, Nanostructures in ferroelectric films for energy applications. Amsterdam: Elsevier; 2019; pp. 129-62.
13. Zhao Y, Ouyang J, Wang K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Stor Mater 2021;39:81-8.
14. Wang K, Zhang Y, Wang S, et al. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 °C. ACS Appl Mater Interfaces 2021;13:22717-27.
15. Zhu H, Zhao YY, Ouyang J, Wang K, Cheng H, Su Y. Achieving a record-high capacitive energy density on Si with columnar nanograined ferroelectric films. ACS Appl Mater Interfaces 2022;14:7805-13.
16. Park S, Jang J, Ahn C, et al. Buffered template strategy for improving texture quality and piezoelectric properties of heterogeneous templated grain growth (K,Na)NbO3-based ceramics through interface engineering. J Eur Ceram Soc 2023;43:1932-40.
17. Yuan M, Zhang W, Wang X, Pan W, Wang L, Ouyang J. In situ preparation of high dielectric constant, low-loss ferroelectric BaTiO3 films on Si at 500 °C. Appl Surf Sci 2013;270:319-23.
18. Wakiya N, Azuma T, Shinozaki K, Mizutani N. Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering. Thin Solid Films 2002;410:114-20.
19. Zhang W, Cheng H, Yang Q, Hu F, Ouyang J. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceram Int 2016;42:4400-5.
20. Xu F, Trolier-mckinstry S, Ren W, Xu B, Xie Z, Hemker KJ. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J Appl Phys 2001;89:1336-48.