REFERENCES
1. Wang X, Dong Q, Pan Y, et al. Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics. Ceram Int 2022;48:13862-8.
2. Wang W, Zhang L, Shi W, et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS Appl Mater Interfaces 2023;15:6990-7001.
3. Pan Y, Wang X, Dong Q, et al. Enhanced energy storage properties of Bi(Ni2/3Nb1/6Ta1/6)O3-NaNbO3 solid solution lead-free ceramics. Ceram Int 2022;48:26466-75.
4. Dong Q, Wang X, Wang J, et al. Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceram Int 2022;48:776-83.
5. Xie A, Qi H, Zuo R, Tian A, Chen J, Zhang S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J Mater Chem C 2019;7:15153-61.
6. Xie A, Zuo R, Qiao Z, Fu Z, Hu T, Fei L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv Energy Mater 2021;11:2101378.
7. Chen H, Chen X, Shi J, et al. Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceram Int 2020;46:28407-13.
8. Ye J, Wang G, Chen X, Dong X. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J Mater 2021;7:339-46.
9. Chen J, Si F, Zhao P, Zhang S, Tang B. Novel lead-free (1-x)Sr0.7Bi0.2TiO3-xLa(Mg0.5Zr0.5)O3 energy storage ceramics with high charge-discharge and excellent temperature-stable dielectric properties. Ceram Int 2021;47:26215-23.
10. Yang L, Qi J, Yang M, et al. High comprehensive energy storage properties in (Sm, Ti) co-doped sodium niobate ceramics. Appl Phys Lett 2023;122:192901.
11. Qu N, Du H, Hao X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J Mater Chem C 2019;7:7993-8002.
12. Yuan Q, Li G, Yao F, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.
13. Zeng D, Dong Q, Nong P, et al. Achieving high energy storage density in BaTiO3- (Bi0.5Li0.5)(Ti0.5Sn0.5)O3 lead-free relaxor ferroelectric ceramics. J Alloys Compd 2023;937:168455.
14. Dong X, Li X, Chen H, et al. Realizing enhanced energy storage and hardness performances in 0.90NaNbO3-0.10Bi(Zn0.5Sn0.5)O3 ceramics. J Adv Ceram 2022;11:729-41.
15. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976;32:751-67.
16. Hreščak J, Dražić G, Deluca M, et al. Donor doping of K0.5Na0.5NbO3 ceramics with strontium and its implications to grain size, phase composition and crystal structure. J Eur Ceram Soc 2017;37:2073-82.
17. Schulz T, Veerapandiyan VK, Gindel T, Deluca M, Töpfer J. Hexavalent (Me - W/Mo)-modified (Ba,Ca)TiO3-Bi(Mg,Me)O3 perovskites for high-temperature dielectrics. J Am Ceram Soc 2020;103:6881-92.
18. Chen H, Wang X, Dong X, et al. Adjusting the energy-storage characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials. ACS Appl Mater Interfaces 2022;14:25609-19.
19. Shi J, Chen X, Sun C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceram Int 2020;46:25731-7.
20. Xie A, Qi H, Zuo R. Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3-SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl Mater Interfaces 2020;12:19467-75.
21. Dai Z, Xie J, Fan X, et al. Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified
22. Wang H, Yuan H, Li X, et al. Enhanced energy density and discharged efficiency of lead-free relaxor
23. Li X, Xing J, Wang F, et al. Realizing high energy density and efficiency simultaneously in (Bi0.5Na0.5)0.7Sr0.3TiO3-based ceramics via introducing linear dielectric CaTiO3. J Mater Chem A 2022;10:18343-53.
24. Liu G, Chen L, Qi H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023;3:2023009.
25. Xie A, Chen J, Zuo J, et al. Excellent energy-storage performance of (0.85 - x)NaNbO3-xNaSbO3-0.15(Na0.5La0.5)TiO3 antiferroelectric ceramics through B-site Sb5+ driven phase transition. ACS Appl Mater Interfaces 2023;15:22301-9.
26. Pang F, Chen X, Shi J, et al. Bi(Mg0.5Sn0.5)O3-doped NaNbO3 lead-free ceramics achieve excellent energy-storage and
27. Ding Y, Li P, He J, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos B Eng 2022;230:109493.
28. Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 2018;6:8528-37.
29. Yadav AK, Fan H, Yan B, et al. High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x)(Al0.50Ta0.50)xO3 perovskite ceramics. J Mater Sci 2020;55:11137-50.
30. Li T, Chen P, Li F, Wang C. Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem Eng J 2021;406:127151.
31. Li X, Tan Z, Xing J, et al. Simultaneous enhancement of energy storage and hardness performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics via multiscale regulation. ACS Appl Mater Interfaces 2022;14:42245-57.
32. Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc 2018;101:5487-96.
33. Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S. Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: high energy storage performance and electrocaloric effect. J Alloys Compd 2019;803:185-92.
34. Zhao N, Fan H, Li C, Huang F, Cao J, Li Z. Enhanced energy storage density and efficiency in Sm3+-doped
35. Zhang M, Yang H, Li D, Lin Y. Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J Alloys Compd 2020;829:154565.
36. Pu Y, Wang W, Guo X, Shi R, Yang M, Li J. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C 2019;7:14384-93.
37. Dong X, Li X, Chen X, Wu J, Zhou H. Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem Eng J 2021;409:128231.
38. Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9.
39. Muhammad R, Ali A, Camargo J, et al. Enhanced thermal stability in dielectric properties of NaNbO3-modified BaTiO3-BiMg1/2Ti1/2O3 ceramics for X9R-MLCC applications. Crystals 2022;12:141.
40. Xu M, Wang X, Nong P, et al. 0.90(0.88NaNbO3-0.12Bi(Ni0.5Zr0.5)O3)-0.10CaTiO3 lead-free dielectric ceramics with high energy storage properties. ACS Appl Energy Mater 2023;6:1630-8.
41. Li X, Cheng Y, Wang F, et al. Enhancement of energy storage and hardness of (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics via introducing Ba(Mg1/3Nb2/3)O3. Chem Eng J 2022;431:133441.