REFERENCES

1. Wang X, Dong Q, Pan Y, et al. Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics. Ceram Int 2022;48:13862-8.

2. Wang W, Zhang L, Shi W, et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS Appl Mater Interfaces 2023;15:6990-7001.

3. Pan Y, Wang X, Dong Q, et al. Enhanced energy storage properties of Bi(Ni2/3Nb1/6Ta1/6)O3-NaNbO3 solid solution lead-free ceramics. Ceram Int 2022;48:26466-75.

4. Dong Q, Wang X, Wang J, et al. Enhanced energy storage performance in Na(1-3x)BixNb0.85Ta0.15O3 relaxor ferroelectric ceramics. Ceram Int 2022;48:776-83.

5. Xie A, Qi H, Zuo R, Tian A, Chen J, Zhang S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J Mater Chem C 2019;7:15153-61.

6. Xie A, Zuo R, Qiao Z, Fu Z, Hu T, Fei L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv Energy Mater 2021;11:2101378.

7. Chen H, Chen X, Shi J, et al. Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceram Int 2020;46:28407-13.

8. Ye J, Wang G, Chen X, Dong X. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J Mater 2021;7:339-46.

9. Chen J, Si F, Zhao P, Zhang S, Tang B. Novel lead-free (1-x)Sr0.7Bi0.2TiO3-xLa(Mg0.5Zr0.5)O3 energy storage ceramics with high charge-discharge and excellent temperature-stable dielectric properties. Ceram Int 2021;47:26215-23.

10. Yang L, Qi J, Yang M, et al. High comprehensive energy storage properties in (Sm, Ti) co-doped sodium niobate ceramics. Appl Phys Lett 2023;122:192901.

11. Qu N, Du H, Hao X. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J Mater Chem C 2019;7:7993-8002.

12. Yuan Q, Li G, Yao F, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018;52:203-10.

13. Zeng D, Dong Q, Nong P, et al. Achieving high energy storage density in BaTiO3- (Bi0.5Li0.5)(Ti0.5Sn0.5)O3 lead-free relaxor ferroelectric ceramics. J Alloys Compd 2023;937:168455.

14. Dong X, Li X, Chen H, et al. Realizing enhanced energy storage and hardness performances in 0.90NaNbO3-0.10Bi(Zn0.5Sn0.5)O3 ceramics. J Adv Ceram 2022;11:729-41.

15. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976;32:751-67.

16. Hreščak J, Dražić G, Deluca M, et al. Donor doping of K0.5Na0.5NbO3 ceramics with strontium and its implications to grain size, phase composition and crystal structure. J Eur Ceram Soc 2017;37:2073-82.

17. Schulz T, Veerapandiyan VK, Gindel T, Deluca M, Töpfer J. Hexavalent (Me - W/Mo)-modified (Ba,Ca)TiO3-Bi(Mg,Me)O3 perovskites for high-temperature dielectrics. J Am Ceram Soc 2020;103:6881-92.

18. Chen H, Wang X, Dong X, et al. Adjusting the energy-storage characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials. ACS Appl Mater Interfaces 2022;14:25609-19.

19. Shi J, Chen X, Sun C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics. Ceram Int 2020;46:25731-7.

20. Xie A, Qi H, Zuo R. Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3-SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale. ACS Appl Mater Interfaces 2020;12:19467-75.

21. Dai Z, Xie J, Fan X, et al. Enhanced energy storage properties and stability of Sr(Sc0.5Nb0.5)O3 modified 0.65BaTiO3-0.35Bi0.5Na0.5TiO3 ceramics. Chem Eng J 2020;397:125520.

22. Wang H, Yuan H, Li X, et al. Enhanced energy density and discharged efficiency of lead-free relaxor (1-x)[(Bi0.5Na0.5)0.94Ba0.06]0.98La0.02TiO3-xKNb0.6Ta0.4O3 ceramic capacitors. Chem Eng J 2020;394:124879.

23. Li X, Xing J, Wang F, et al. Realizing high energy density and efficiency simultaneously in (Bi0.5Na0.5)0.7Sr0.3TiO3-based ceramics via introducing linear dielectric CaTiO3. J Mater Chem A 2022;10:18343-53.

24. Liu G, Chen L, Qi H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023;3:2023009.

25. Xie A, Chen J, Zuo J, et al. Excellent energy-storage performance of (0.85 - x)NaNbO3-xNaSbO3-0.15(Na0.5La0.5)TiO3 antiferroelectric ceramics through B-site Sb5+ driven phase transition. ACS Appl Mater Interfaces 2023;15:22301-9.

26. Pang F, Chen X, Shi J, et al. Bi(Mg0.5Sn0.5)O3-doped NaNbO3 lead-free ceramics achieve excellent energy-storage and charge/discharge performances. ACS Sustain Chem Eng 2021;9:4863-71.

27. Ding Y, Li P, He J, et al. Simultaneously achieving high energy-storage efficiency and density in Bi-modified SrTiO3-based relaxor ferroelectrics by ion selective engineering. Compos B Eng 2022;230:109493.

28. Zhou M, Liang R, Zhou Z, Dong X. Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 2018;6:8528-37.

29. Yadav AK, Fan H, Yan B, et al. High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1−x)(Al0.50Ta0.50)xO3 perovskite ceramics. J Mater Sci 2020;55:11137-50.

30. Li T, Chen P, Li F, Wang C. Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem Eng J 2021;406:127151.

31. Li X, Tan Z, Xing J, et al. Simultaneous enhancement of energy storage and hardness performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics via multiscale regulation. ACS Appl Mater Interfaces 2022;14:42245-57.

32. Cai Z, Wang X, Hong W, Luo B, Zhao Q, Li L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J Am Ceram Soc 2018;101:5487-96.

33. Li F, Zhai J, Shen B, Zeng H, Jian X, Lu S. Multifunctionality of lead-free BiFeO3-based ergodic relaxor ferroelectric ceramics: high energy storage performance and electrocaloric effect. J Alloys Compd 2019;803:185-92.

34. Zhao N, Fan H, Li C, Huang F, Cao J, Li Z. Enhanced energy storage density and efficiency in Sm3+-doped ((Bi0.5Na0.5)0.7(Sr0.7Bi0.2)0.3))TiO3 ceramics. J Mater Sci Mater Electron 2021;32:24930-8.

35. Zhang M, Yang H, Li D, Lin Y. Excellent energy density and power density achieved in K0.5Na0.5NbO3-based ceramics with high optical transparency. J Alloys Compd 2020;829:154565.

36. Pu Y, Wang W, Guo X, Shi R, Yang M, Li J. Enhancing the energy storage properties of Ca0.5Sr0.5TiO3-based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. J Mater Chem C 2019;7:14384-93.

37. Dong X, Li X, Chen X, Wu J, Zhou H. Simultaneous enhancement of polarization and breakdown strength in lead-free BaTiO3-based ceramics. Chem Eng J 2021;409:128231.

38. Tian A, Zuo R, Qi H, Shi M. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J Mater Chem A 2020;8:8352-9.

39. Muhammad R, Ali A, Camargo J, et al. Enhanced thermal stability in dielectric properties of NaNbO3-modified BaTiO3-BiMg1/2Ti1/2O3 ceramics for X9R-MLCC applications. Crystals 2022;12:141.

40. Xu M, Wang X, Nong P, et al. 0.90(0.88NaNbO3-0.12Bi(Ni0.5Zr0.5)O3)-0.10CaTiO3 lead-free dielectric ceramics with high energy storage properties. ACS Appl Energy Mater 2023;6:1630-8.

41. Li X, Cheng Y, Wang F, et al. Enhancement of energy storage and hardness of (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectrics via introducing Ba(Mg1/3Nb2/3)O3. Chem Eng J 2022;431:133441.

42. Lin Y, Li D, Zhang M, Yang H. (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J Mater Chem C 2020;8:2258-64.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/