REFERENCES

1. Nishiyama Z. Martensitic transformation. Amsterdam: Elsevier; 2012.

2. Bhadeshia H, Honeycombe R. Steels: microstructure and properties. Oxford: Butterworth-Heinemann; 2017.

3. Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Mater 2004;52:2765-78.

4. Lagoudas DC. Shape memory alloys: modeling and engineering applications. Berlin: Springer; 2008.

5. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 2005;50:511-678.

6. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5.

7. Morin FJ. Oxides which show a metal-to-insulator transition at the neel temperature. Phys Rev Lett 1959;3:34-6.

8. Goodenough JB. The two components of the crystallographic transition in VO2. J Solid State Chem 1971;3:490-500.

9. Han X, Zou W, Wang R, Zhang Z, Yang D. Structure and substructure of martensite in a Ti36.5Ni48.5Hf15 high temperature shape memory alloy. Acta Mater 1996;44:3711-21.

10. Nishida M, Nishiura T, Kawano H, Inamura T. Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys - part I. morphological and crystallographic studies of the variant selection rule. Philos Mag 2012;92:2215-33.

11. Dong J, Umale T, Young B, Karaman I, Xie KY. Structure and substructure characterization of solution-treated Ni50.3Ti29.7Hf20 high-temperature shape memory alloy. Scr Mater 2022;219:114888.

12. Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe R. Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 2016;121:374-83.

13. Karaca H, Saghaian S, Ded G, et al. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 2013;61:7422-31.

14. Cayron C. What EBSD and TKD tell us about the crystallography of the martensitic B2-B19′ transformation in NiTi shape memory alloys. Crystals 2020;10:562.

15. Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P. Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z Kristall 2010;225:103-9.

16. Rottmann PF, Hemker KJ. Experimental observations of twin formation during thermal annealing of nanocrystalline copper films using orientation mapping. Scr Mater 2017;141:76-9.

17. Ma X, Zhao D, Yadav S, Sagapuram D, Xie KY. Grain-subdivision-dominated microstructure evolution in shear bands at high rates. Mate Res Lett 2020;8:328-34.

18. Yadav D, Zhao D, Baldwin JK, Devaraj A, Demkowicz MJ, Xie KY. Persistence of crystal orientations across sub-micron-scale “super-grains” in self-organized Cu-W nanocomposites. Scr Mater 2021;194:113677.

19. Johnstone DN, van Helvoort ATJ, Midgley PA. Nanoscale strain tomography by scanning precession electron diffraction. Microsc Microanal 2017;23:1710-1.

20. Ånes HW, Andersen IM, van Helvoort ATJ. Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition. Microsc Microanal 2018;24:586-7.

21. Martineau BH, Johnstone DN, van Helvoort ATJ, Midgley PA, Eggeman AS. Unsupervised machine learning applied to scanning precession electron diffraction data. Adv Struct Chem Imaging 2019;3:5.

22. Bergh T, Johnstone DN, Crout P, et al. Nanocrystal segmentation in scanning precession electron diffraction data. J Microsc 2020;279:158-67.

23. Portillo J, Rauch EF, Nicolopoulos S, Gemmi M, Bultreys D. Precession electron diffraction assisted orientation mapping in the transmission electron microscope. In: Materials Science Forum; 2010. pp. 1-7.

24. Zhang Y, Fincher CD, Gurrola RM, et al. Strategic texturation of VO2 thin films for tuning mechanical, structural, and electronic couplings during metal-insulator transitions. Acta Mater 2023;242:118478.

25. Zhao D, Patel A, Barbosa A, et al. A reference-area-free strain mapping method using precession electron diffraction data. Ultramicroscopy 2023;247:113700.

26. Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078-113.

27. Schofield P, Bradicich A, Gurrola RM, et al. Harnessing the metal-insulator transition of VO2 in neuromorphic computing. Adv Mater 2022:e2205294.

28. Corti E, Gotsmann B, Moselund K, Ionescu AM, Robertson J, Karg S. Scaled resistively-coupled VO2 oscillators for neuromorphic computing. Solid State Electron 2020;168:107729.

29. de la Pena F, Ostasevicius T, Tonaas Fauske V, et al. Electron microscopy (big and small) data analysis with the open source software package hyperspy. Microsc Microanal 2017;23:214-5.

30. Wang L, Zhang Y, Feng J. On the Euclidean distance of images. IEEE Trans Pattern Anal Mach Intell 2005;27:1334-9.

31. Xia P, Zhang L, Li F. Learning similarity with cosine similarity ensemble. Inf Sci 2015;307:39-52.

32. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Pattern Anal Mach Intell 2004;13:600-12.

33. Lloyd S. Least squares quantization in PCM. IEEE Trans Pattern Anal Mach Intell 1982:28;129-37.

34. Gulli A, Pal S. Deep learning with Keras. Birmingham: Packt; 2017.

35. Mika S, Schölkopf B, Smola A, Müller K-R, Scholz M, Rätsch G. Kernel PCA and de-noising in feature spaces. In: advances in neural information processing systems. Cambridge: MIT Press;1999: pp. 536-42.

36. Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. Stanford, 2006. Available from: https://www.researchgate.net/publication/220778887_K-Means_The_Advantages_of_Careful_Seeding [Last accessed on 27 Jun 2023].

37. Zhao Y, Hwan Lee J, Zhu Y, et al. Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J Appl Phys 2012;111:053533.

38. Fan LL, Wu YF, Si C, Pan GQ, Zou CW, Wu ZY. Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains. Appl Phys Lett 2013;102:011604.

39. Gonzalez RC, Woods RE. Digital image processing. Pearson education: India; 2009.

40. Dhanachandra N, Manglem K, Chanu YJ. Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia Comput Sci 2015;54:764-71.

41. Ray S, Turi RH. Determination of number of clusters in K-means clustering and application in colour image segmentation. In: 4th International Conference on Advances in Pattern Recognition and Digital Techniques. 2023 Jun 17-18; Sydney, Australia. pp. 137-43.

42. Ghahramani Z. Unsupervised learning.In: Advanced Lectures on Machine Learning. 2003 Feb 2-14; ML Summer Schools, Canberra, Australia. pp. 72-112

43. Ophus C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc Microanal 2019;25:563-82.

44. Williams DB, Carter CB. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. Springer; 2009.

45. Oleynikov P, Hovmöller S, Zou XD. Precession electron diffraction: observed and calculated intensities. Ultramicroscopy 2007;107:523-33.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/