REFERENCES

1. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-25.

2. Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

3. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro, N. A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

4. Jin, C.; Ma, E. Y.; Karni, O.; Regan, E. C.; Wang, F.; Heinz, T. F. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 2018, 13, 994-1003.

5. Wang, Z.; Xu, B.; Pei, S.; et al. Recent progress in 2D van der Waals heterostructures: fabrication, properties, and applications. Sci. China. Inf. Sci. 2022, 65, 3432.

6. He, J.; Wang, C.; Zhou, B.; Zhao, Y.; Tao, L.; Zhang, H. 2D van der Waals heterostructures: processing, optical properties and applications in ultrafast photonics. Mater. Horiz. 2020, 7, 2903-21.

7. Liao, W.; Huang, Y.; Wang, H.; Zhang, H. Van der Waals heterostructures for optoelectronics: progress and prospects. Appl. Mater. Today. 2019, 16, 435-55.

8. Liang, S. J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 2020, 32, e1903800.

9. Li, C.; Zhou, P.; Zhang, D. W. Devices and applications of van der Waals heterostructures. J. Semicond. 2017, 38, 031005.

10. Liu, C. H.; Clark, G.; Fryett, T.; et al. Nanocavity integrated van der Waals heterostructure light-emitting tunneling diode. Nano. Lett. 2017, 17, 200-5.

11. Binder, J.; Withers, F.; Molas, M. R.; et al. Sub-bandgap voltage electroluminescence and magneto-oscillations in a WSe2 light-emitting van der Waals heterostructure. Nano. Lett. 2017, 17, 1425-30.

12. Yan, R.; Fathipour, S.; Han, Y.; et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano. Lett. 2015, 15, 5791-8.

13. Özçelik, V. O.; Azadani, J. G.; Yang, C.; Koester, S. J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B. 2016, 94.

14. Massicotte, M.; Schmidt, P.; Vialla, F.; et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42-6.

15. Lin, Y. C.; Ghosh, R. K.; Addou, R.; et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 2015, 6, 7311.

16. Zhou, Y.; Nie, Y.; Liu, Y.; et al. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS. Nano. 2014, 8, 1485-90.

17. Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS. Nano. 2012, 6, 5988-94.

18. Lei, S.; Ge, L.; Liu, Z.; et al. Synthesis and photoresponse of large GaSe atomic layers. Nano. Lett. 2013, 13, 2777-81.

19. Late, D. J.; Liu, B.; Luo, J.; et al. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549-54.

20. Zhuang, H. L.; Hennig, R. G. Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem. Mater. 2013, 25, 3232-8.

21. Zappia, M. I.; Bianca, G.; Bellani, S.; et al. Solution-processed GaSe nanoflake-based films for photoelectrochemical water splitting and photoelectrochemical-type photodetectors. Adv. Funct. Mater. 2020, 30, 1909572.

22. Ben, A. Z.; Pierucci, D.; Henck, H.; et al. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Phys. Rev. B. 2017, 96, 035407.

23. Jung, C. S.; Shojaei, F.; Park, K.; et al. Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS. Nano. 2015, 9, 9585-93.

24. Cui, Y.; Peng, L.; Sun, L.; Qian, Q.; Huang, Y. Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. J. Mater. Chem. A. 2018, 6, 22768-77.

25. Allakhverdiev, K. R.; Yetis, M. Ö.; Özbek, S.; Baykara, T. K.; Salaev, E. Y. Effective nonlinear GaSe crystal. Optical properties and applications. Laser. Phys. 2009, 19, 1092-104.

26. Leontie, L.; Evtodiev, I.; Nedeff, V.; Stamate, M.; Caraman, M. Photoelectric properties of Bi2O3∕GaSe heterojunctions. Appl. Physs. Lett. 2009, 94, 071903.

27. Xia, C.; Li, J. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. J. Semicond. 2016, 37, 051001.

28. Zhang, X.; Wang, S.; Wan, G.; Zhang, Y.; Huang, M.; Yi, L. Transient reflectivity measurement of photocarrier dynamics in GaSe thin films. Appl. Phys. B. 2017, 123, 1-7.

29. Liu, S.; Mahony, T. S.; Bender, D. A.; Sinclair, M. B.; Brener, I. Mid-infrared time-domain spectroscopy system with carrier-envelope phase stabilization. Appl. Phys. Lett. 2013, 103, 181111.

30. Zhang, C. J.; Park, S. H.; Ronan, O.; et al. Enabling flexible heterostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions. Small 2017, 13, 1701677.

31. Hong, Y. L.; Liu, Z.; Wang, L.; et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 2020, 369, 670-4.

32. Bafekry, A.; Faraji, M.; Fadlallah, M. M.; et al. Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Appl. Surf. Sci. 2021, 559, 149862.

33. Guo, X.; Guo, S. Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain*. Chinese. Phys. B. 2021, 30, 067102.

34. Jian, C.; Ma, X.; Zhang, J.; Yong, X. Strained MoSi2N4 monolayers with excellent solar energy absorption and carrier transport properties. J. Phys. Chem. C. 2021, 125, 15185-93.

35. Pham, K. D.; Nguyen, C. Q.; Nguyen, C. V.; Cuong, P. V.; Hieu, N. V. Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices. New. J. Chem. 2021, 45, 5509-16.

36. Cao, L.; Zhou, G.; Wang, Q.; Ang, L. K.; Ang, Y. S. Two-dimensional van der Waals electrical contact to monolayer MoSi2N4. Appl. Phys. Lett. 2021, 118, 013106.

37. Bafekry, A.; Faraji, M.; Abdollahzadeh, Z. A.; et al. A van der Waals heterostructure of MoS2/MoSi2N4: a first-principles study. New. J. Chem. 2021, 45, 8291-6.

38. Cai, X.; Zhang, Z.; Zhu, Y.; et al. A two-dimensional MoSe2/MoSi2N4 van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties. J. Mater. Chem. C. 2021, 9, 10073-83.

39. Wang, Q.; Cao, L.; Liang, S.; et al. Efficient ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. npj. 2D. Mater. Appl. 2021, 5, 71.

40. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for density functional theory. Chem. Rev. 2012, 112, 289-320.

41. Allouche, A. R. Gabedit--a graphical user interface for computational chemistry softwares. J. Comput. Chem. 2011, 32, 174-82.

42. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953-79.

43. Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272-6.

44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

45. Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The perdew-burke-ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.

46. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 2003, 118, 8207-15.

47. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scripta. Mater. 2015, 108, 1-5.

48. Grzonka, J.; Claro, M. S.; Molina‐sánchez, A.; Sadewasser, S.; Ferreira, P. J. Novel polymorph of GaSe. Adv. Funct. Mater. 2021, 31, 2104965.

49. Born, M.; Huang, K.; Lax, M. Dynamical theory of crystal lattices. Am. J. Phys. 1955, 23, 474.

50. Mouhat, F.; Coudert, F. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B. 2014, 90, 224104.

51. Zhang, W. X.; Yin, Y.; He, C. Spontaneous enhanced visible-light-driven photocatalytic water splitting on novel type-II GaSe/CN and Ga2SSe/CN vdW heterostructures. J. Phys. Chem. Lett. 2021, 12, 5064-75.

52. He, C.; Liang, Y.; Zhang, W. Constructing a novel metal-free g-C3N4/g-CN vdW heterostructure with enhanced visible-light-driven photocatalytic activity for water splitting. Appl. Surf. Sci. 2021, 553, 149550.

53. Yankowitz, M.; Watanabe, K.; Taniguchi, T.; San-Jose, P.; LeRoy, B. J. Pressure-induced commensurate stacking of graphene on boron nitride. Nat. Commun. 2016, 7, 13168.

54. Tongay, S.; Fan, W.; Kang, J.; et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano. Lett. 2014, 14, 3185-90.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/