REFERENCES

1. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.

2. Zou K, Dan Y, Xu H, et al. Recent advances in lead-free dielectric materials for energy storage. Mater Res Bull 2019;113:190-201.

3. Shi P, Li T, Zhu X, et al. High strain in Bi0.5Na0.5TiO3-based relaxors by adding two modifiers featuring with morphotropic phase boundary. Scripta Mater 2022;218:114674.

4. Qi H, Zuo R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mate Chem A 2019;8:3971-8.

5. Zhu X, Shi P, Gao Y, et al. Enhanced energy storage performance of 0.88(0.65Bi0.5Na0.5TiO3-0.35SrTiO3)-0.12Bi(Mg0.5Hf0.5)O3 lead-free relaxor ceramic by composition design strategy. Chem Eng J 2022;437:135462.

6. Lv J, Li Q, Li Y, et al. Significantly improved energy storage performance of NBT-BT based ceramics through domain control and preparation optimization. Chem Eng J 2021;420:129900.

7. Luo C, Feng Q, Luo N, et al. Effect of Ca2+/Hf4+ modification at A/B sites on energy-storage density of Bi0.47Na0. 47Ba0.06TiO3 ceramics. Chem Eng J 2021;420:129861.

8. Yao Y, Li Y, Sun N, et al. Enhanced dielectric and energy-storage properties in ZnO-doped 0.9(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.1NaNbO3 ceramics. Ceram Int 2018;44:5961-6.

9. Ma C, Tan X, Dul’kin E, Roth M. Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Appl Phys 2010;108:104105.

10. Ma C, Guo H, Beckman SP, Tan X. Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoelectrics. Phys Rev Lett 2012;109:107602.

11. Li T, Lou X, Ke X, et al. Giant strain with low hysteresis in a-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta Mater 2017;128:337-44.

12. Cao W, Li W, Feng Y, et al. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl Phys Lett 2016;108:202902.

13. Liu Z, Ren P, Long C, Wang X, Wan Y, Zhao G. Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J Alloy Compd 2017;721:538-44.

14. Zhang L, Pu Y, Chen M, et al. High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J Eur Ceram Soc 2020;40:71-7.

15. Wang C, Lou X, Xia T, Tian S. The dielectric, strain and energy storage density of BNT-BKHxT1-x piezoelectric ceramics. Ceram Int 2017;43:9253-8.

16. Zhu X, Shi P, Kang R, et al. Enhanced energy storage density of Sr0.7BixTiO3 lead-free relaxor ceramics via a-site defect and grain size tuning. Chem Eng J 2021;420:129808.

17. Liu L, Fan H, Fang L, Chen X, Dammak H, Thi MP. Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater Chem Phys 2009;117:138-41.

18. Shi P, Zhu X, Lou X, et al. Tailoring ferroelectric polarization and relaxation of BNT-based lead-free relaxors for superior energy storage properties. Chem Eng J 2022;428:132612.

19. Grace MAL, Sambasivam R, Perumal RN, Athikesavan V. Enhanced synthesis, structure, and ferroelectric properties of Nb-modified 1-x[Bi0.5(Na0.4K0.1)(Ti1−xNbx)]O3-x(Ba0.7Sr0.3)TiO3 ceramics for energy storage applications. J Aust Ceram Soc 2020;56:157-65.

20. Viola G, Ning H, Wei X, et al. Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 2013;114:014107.

21. Shi P, Zhu X, Lou X, et al. Bi0.5Na0.5TiO3-based lead-free ceramics with superior energy storage properties at high temperatures. Compos Part B Eng 2021;215:108815.

22. Chen P, Chu B. Improvement of dielectric and energy storage properties in Bi(Mg1/2Ti1/2)O3-modified (Na1/2Bi1/2)0.92Ba0.08TiO3 ceramics. J Eur Ceram Soc 2016;36:81-8.

23. Li W, Zhou D, Pang L. Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl Phys Lett 2017;110:132902.

24. Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1701824.

25. Wang T, Jin L, Li C, Hu Q, Wei X, Lupascu D. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J Am Ceram Soc 2015;98:559-66.

26. Shi P, Hong Z, Zhu X, et al. Enhancement of energy storage properties of Bi0.5Na0.5TiO3-based relaxor ferroelectric under moderate electric field. Appl Phys Lett 2022;120:132903.

27. Lou XJ. Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys 2009;105:024101.

28. Lou XJ, Zhang M, Redfern SAT, Scott JF. Fatigue as a local phase decomposition: a switching-induced charge-injection model. Phys Rev B 2007:75.

29. Lou XJ, Zhang M, Redfern SA, Scott JF. Local phase decomposition as a cause of polarization fatigue in ferroelectric thin films. Phys Rev Lett 2006;97:177601.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/