REFERENCES

1. Zhang Y, Zuo TT, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci 2014;61:1-93.

2. Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 2004;6:299-303.

3. Cantor B, Chang I, Knight P, Vincent A. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 2004;375-377:213-8.

4. Ye Y, Wang Q, Lu J, Liu C, Yang Y. High-entropy alloy: challenges and prospects. Mater Today 2016;19:349-62.

5. George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat Rev Mater 2019;4:515-34.

6. Naeem M, He H, Zhang F, et al. Cooperative deformation in high-entropy alloys at ultralow temperatures. Sci Adv 2020;6:eaax4002.

7. Liu D, Yu Q, Kabra S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 2022;378:978-83.

8. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014;345:1153-8.

9. Zhang C, Yu Q, Tang YT, et al. Strong and ductile FeNiCoAl-based high-entropy alloys for cryogenic to elevated temperature multifunctional applications. Acta Mater 2023;242:118449.

10. Han L, Maccari F, Souza Filho IR, et al. A mechanically strong and ductile soft magnet with extremely low coercivity. Nature 2022;608:310-6.

11. Yang T, Zhao YL, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 2018;362:933-7.

12. Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019;574:223-7.

13. Yang T, Zhao YL, Li WP, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science 2020;369:427-32.

14. Zhang BB, Tang YG, Mei QS, Li XY, Lu K. Inhibiting creep in nanograined alloys with stable grain boundary networks. Science 2022;378:659-63.

15. Wang J, Kou Z, Fu S, et al. Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition. J Mater Sci Technol 2022;115:29-39.

16. Han L, Xu X, Wang L, Pyczak F, Zhou R, Liu Y. A eutectic high-entropy alloy with good high-temperature strength-plasticity balance. Mater Res Lett 2019;7:460-6.

17. Han L, Xu X, Li Z, Liu B, Liu CT, Liu Y. A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Mater Res Lett 2020;8:373-82.

18. Li Z, Raabe D. Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater Chem Phys 2018;210:29-36.

19. Bhattacharjee P, Sathiaraj G, Zaid M, et al. Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. J Alloys Compd 2014;587:544-52.

20. Zhang K, Fu Z, Zhang J, et al. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J Alloys Compd 2010;502:295-9.

21. Kui HW, Greer AL, Turnbull D. Formation of bulk metallic glass by fluxing. Appl Phys Lett 1984;45:615-6.

22. Utigard TA. The properties and uses of fluxes in molten aluminum processing. JOM 1998;50:38-43.

23. Lau C, Kui H. Microstructures of undercooled germanium. Acta Metall Mater 1991;39:323-7.

24. Ho C, Leung C, Yip Y, Mok S, Kui H. Ductile Fe83C17 alloys of ultrafine networklike microstructure. Metall Mat Trans A 2010;41:3443-51.

25. Ho CM, Kui HW. Ductile and high strength white cast iron of ultrafine interconnected network morphology. Metall Mat Trans A 2011;42:3826-37.

26. Lu Y, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 2014;4:6200.

27. Gao X, Lu Y, Zhang B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Mater 2017;141:59-66.

28. Wu Z, Lu X, Wu Z, Kui H. Spinodal decomposition in Pd41.25Ni41.25P17.5 bulk metallic glasses. J Non Cryst Solids 2014;385:40-6.

29. Chen J, Kang L, Lu H, Luo P, Wang F, He L. The general purpose powder diffractometer at CSNS. Phys Rev B Condens Matter 2018;551:370-2.

30. Allen C. Larson RBVD. General structure analysis system (GSAS) report LAUR 86-748. Los Alamos national laboratory. 2004. Available from: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf [Last accessed on 22 March 2023].

31. Lan S, Blodgett M, Kelton KF, Ma JL, Fan J, Wang X. Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl Phys Lett 2016;108:211907.

32. Wu X, Wang B, Rehm C, et al. Ultra-small-angle neutron scattering study on temperature-dependent precipitate evolution in CoCrFeNiMo0.3 high entropy alloy. Acta Mater 2022;222:117446.

33. Xu S, Li J, Cui Y, et al. Mechanical properties and deformation mechanisms of a novel austenite-martensite dual phase steel. Int J Plast 2020;128:102677.

34. Clausen B, Lorentzen T, Bourke MA, Daymond MR. Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater Sci Eng A 1999;259:17-24.

35. Pang J, Holden T, Wright J, Mason T. The generation of intergranular strains in 309H stainless steel under uniaxial loading. Acta Mater 2000;48:1131-40.

36. Ma L, Wang L, Nie Z, et al. Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Mater 2017;128:12-21.

37. Fu B, Yang W, Wang Y, Li L, Sun Z, Ren Y. Micromechanical behavior of TRIP-assisted multiphase steels studied with in situ high-energy X-ray diffraction. Acta Mater 2014;76:342-54.

38. Warren BE. X-ray diffraction. Courier Corporation; 1990. Available from: https://scholar.google.com/scholar?cluster=15231993657912304740&hl=zh-TW&as_sdt=0,5 [Last accessed on 22 March 2023].

39. He H, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy. Nano Lett 2021;21:1419-26.

40. Taylor GI. Plastic strain in metals. Available from: https://cir.nii.ac.jp/crid/1573105974372618880 [Last accessed on 22 March 2023].

41. Cheng S, Stoica AD, Wang XL, et al. Deformation crossover: from nano- to mesoscale. Phys Rev Lett 2009;103:035502.

42. Wang B, He H, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scr Mater 2018;155:54-7.

43. Chen X, Wang Q, Cheng Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 2021;592:712-6.

44. Lan S, Zhu L, Wu Z, et al. A medium-range structure motif linking amorphous and crystalline states. Nat Mater 2021;20:1347-52.

45. Lan S, Wu Z, Wei X, et al. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. Acta Mater 2018;149:108-18.

46. Li Q, Kui H. Formation of bulk magnetic nanostructured Fe40Ni40P14B6 alloys by metastable liquid state phase separation. MRS Online Proc Lib 1999;581:277-82.

47. Cahn JW. On spinodal decomposition. Acta Metall 1961;9:795-801.

48. Nagashio K, Kuribayashi K. Growth mechanism of twin-related and twin-free facet Si dendrites. Acta Mater 2005;53:3021-9.

49. Schwarz M, Karma A, Eckler K, Herlach DM. Physical mechanism of grain refinement in solidification of undercooled melts. Phys Rev Lett 1994;73:1380-3.

50. Herlach DM, Simons D, Pichon PY. Crystal growth kinetics in undercooled melts of pure Ge, Si and Ge-Si alloys. Philos Trans A Math Phys Eng Sci 2018;376:20170205.

51. Jackson K. The present state of the theory of crystal growth from the melt. J Cryst Growth 1974;24-25:130-6.

52. Cahn JW. Theory of crystal growth and interface motion in crystalline materials. Acta Metall 1960;8:554-62.

53. Fan J, Zhang L, Yu P, et al. A novel high-entropy alloy with a dendrite-composite microstructure and remarkable compression performance. Scr Mater 2019;159:18-23.

54. Shi P, Ren W, Zheng T, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat Commun 2019;10:489.

55. Wu Z, Bei H, Otto F, Pharr G, George E. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014;46:131-40.

56. Senkov O, Wilks G, Scott J, Miracle D. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011;19:698-706.

57. Wang Z, Baker I, Guo W, Poplawsky JD. The effect of carbon on the microstructures, mechanical properties, and deformation mechanisms of thermo-mechanically treated Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Mater 2017;126:346-60.

58. Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference. Mater Trans 2005;46:2817-29.

59. Harjo S, Tomota Y, Lukáš P, et al. In situ neutron diffraction study of α-γ Fe-Cr-Ni alloys under tensile deformation. Acta Mater 2001;49:2471-9.

60. Lee S, Woo W, De Cooman BC. Analysis of the plasticity-enhancing mechanisms in 12 pctMn Austeno-ferritic steel by in situ neutron diffraction. Metall Mat Trans A 2014;45:5823-8.

61. Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater 2004;52:5737-45.

62. Naeem M, He H, Harjo S, et al. Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy. Acta Mater 2021;221:117371.

63. Das A, Tarafder S. Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scr Mater 2008;59:1014-7.

64. Parrington RJ. Fractography of metals and plastics. Pract Fail Anal 2002;2:16-9.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/