REFERENCES
1. Wu S, Chen Y, Jiao T, et al. An aqueous Zn-Ion hybrid supercapacitor with high energy density and ultrastability up to 80,000 cycles. Adv Energy Mater 2019;9:1902915.
2. Yu Z, Duong B, Abbitt D, Thomas J. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 2013;25:3302-6.
3. Ji J, Zhang LL, Ji H, et al. Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 2013;7:6237-43.
4. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 2015;44:1777-90.
5. Xu B, Zhang H, Mei H, Sun D. Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord Chem Rev 2020;420:213438.
6. Ma R, Chen Z, Zhao D, et al. Ti3C2Tx MXene for electrode materials of supercapacitors. J Mater Chem A 2021;9:11501-29.
7. Li K, Zhao B, Zhang H, et al. 3D porous honeycomb-like CoN-Ni3N/N-C nanosheets integrated electrode for high-energy-density flexible supercapacitor. Adv Funct Mater 2021;31:2103073.
8. Meng L, Bi J, Gao X, et al. Heterostructure Co2N-Ni3N/NF nanoarrays synthesized by in situ nitriding treatment for high-performance supercapacitor. J Alloys Compd 2022;909:164721.
9. Zhu C, Sun Y, Chao D, et al. A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy 2016;26:1-6.
10. Xiao X, Peng X, Jin H, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 2013;25:5091-7.
11. Xiao X, Yu H, Jin H, et al. Salt-templated synthesis of 2D metallic mon and other nitrides. ACS Nano 2017;11:2180-6.
12. Wang H, Li J, Li K, et al. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev 2021;50:1354-90.
13. Yang H, Ning P, Cao H, et al. Selectively anchored vanadate host for self-boosting catalytic synthesis of ultra-fine vanadium nitride/nitrogen-doped hierarchical carbon hybrids as superior electrode materials. Electrochim Acta 2020;332:135387.
14. Jin T, Sang X, Unocic RR, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv Mater 2018;30:e1707512.
15. Patra S, Roy E, Madhuri R, Sharma PK. Agar based bimetallic nanoparticles as high-performance renewable adsorbent for removal and degradation of cationic organic dyes. J Ind Eng Chem 2016;33:226-38.
16. Patra S, Roy E, Madhuri R, Sharma PK. Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology. Anal Chim Acta 2016;918:77-88.
17. Aziz ST, Kumar S, Riyajuddin S, Ghosh K, Nessim GD, Dubal DP. Bimetallic phosphides for hybrid supercapacitors. J Phys Chem Lett 2021;12:5138-49.
18. Ren F, Ji Y, Chen F, Qian Y, Tian J, Wang J. Flower-like bimetal Ni/Co-based metal-organic-framework materials with adjustable components toward high performance solid-state supercapacitors. Mater Chem Front 2021;5:7333-42.
19. Huang K, Sun Y, Zhang Y, Wang X, Zhang W, Feng S. Hollow-structured metal oxides as oxygen-related catalysts. Adv Mater 2019;31:e1801430.
20. Zhu M, Cheng Y, Luo Q, El-khateeb M, Zhang Q. A review of synthetic approaches to hollow nanostructures. Mater Chem Front 2021;5:2552-87.
21. Liu X, Deng S, Xiao D, et al. Hierarchical bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays for efficient hydrogen evolution reaction over all pH values. ACS Appl Mater Interfaces 2019;11:42233-42.
22. Dong J, Lu G, Yue J, Cheng Z, Kang X. Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor. Appl Surf Sci 2019;480:1116-25.
23. Yang Y, Shao Z. Boron and nitrogen co-doped carbon nanospheres for supercapacitor electrode with excellent specific capacitance. Nanotechnology 2022;33:185403.
24. Yang M, Ning H, Xiao L, Cui F, Zhang F. Mn3O4/MnS heterostructure for electrode and asymmetric supercapacitor under high charge/discharge current. Electrochim Acta 2022;424:140630.
25. Qiu L, Yang W, Zhao Q, et al. NiS nanoflake-coated carbon nanofiber electrodes for supercapacitors. ACS Appl Nano Mater 2022;5:6192-200.
26. Ran F, Yang X, Xu X, Li S, Liu Y, Shao L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chem Eng J 2021;412:128673.
27. Liang J, Li M, Chai Y, Luo M, Li L. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors. J Power Sources 2017;362:123-30.
28. Chen Y, Yang D, Xin X, et al. Multi-stepwise charge transfer via MOF@MOF/TiO2 dual-heterojunction photocatalysts towards hydrogen evolution. J Mater Chem A 2022;10:9717-25.
29. Zhang H, Yao Z, Lan D, Liu Y, Ma L, Cui J. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J Alloys Compd 2021;861:158560.
30. Rezaei B, Hansen TW, Keller SS. Stereolithography-derived three-dimensional pyrolytic carbon/Mn3O4 nanostructures for free-standing hybrid supercapacitor electrodes. ACS Appl Nano Mater 2022;5:1808-19.
31. Xing M, Gao A, Liang Y, et al. Defect-engineered 3D cross-network Co3O4-xNx nanostructure for high-performance solid-state asymmetric supercapacitors. ACS Appl Energy Mater 2021;4:888-98.
32. Rabani I, Zafar R, Subalakshmi K, Kim HS, Bathula C, Seo YS. A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. J Hazard Mater 2021;407:124360.
33. Vanaraj R, Vinodh R, Periyasamy T, et al. Capacitance enhancement of metal-organic framework (MOF) materials by their morphology and structural formation. Energy Fuels 2022;36:4978-91.
34. Chen L, Huang Z, Liang H, Gao H, Yu S. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 2014;24:5104-11.
35. Dong Z, Zhang W, Xiao Y, et al. One-pot-synthesized CoFe-glycerate hollow spheres with rich oxyhydroxides for efficient oxygen evolution reaction. ACS Sustain Chem Eng 2020;8:5464-77.
36. Zhao J, Zou XX, Su J, Wang PP, Zhou LJ, Li GD. Synthesis and photocatalytic activity of porous anatase TiO2 microspheres composed of {010}-faceted nanobelts. Dalton Trans 2013;42:4365-8.
37. Hua W, Sun H, Liu H, Li Y, Wang J. Interface engineered NiMoN/Ni3N heterostructures for enhanced alkaline hydrogen evolution reaction. Appl Surf Sci 2021;540:148407.
38. Hu Y, Luo Z, Guo M, et al. Interface engineering of Co2N0.67/CoMoO4 heterostructure nanosheets as a highly active electrocatalyst for overall water splitting and Zn-H2O cell. Chem Eng J 2022;435:134795.
39. Sun J, Lu J, Huang C, et al. Modification of Ni3N with a cobalt-doped carbon shell for high-performance hydrogen evolution in alkaline media. ACS Sustain Chem Eng 2021;9:1994-2002.
40. Tong R, Xu M, Huang H, et al. Co2N0.67/MoO2 heterostructure as high-efficiency electrocatalysts for the hydrogen evolution reaction. ACS Appl Energy Mater 2022;5:440-8.
41. Wang M, Ma W, Lv Z, Liu D, Jian K, Dang J. Co-doped Ni3N nanosheets with electron redistribution as bifunctional electrocatalysts for efficient water splitting. J Phys Chem Lett 2021;12:1581-7.
42. Inagaki M, Toyoda M, Soneda Y, Morishita T. Nitrogen-doped carbon materials. Carbon 2018;132:104-40.
43. Shi B, Li L, Chen A, Jen TC, Liu X, Shen G. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial Zinc-Ion hybrid supercapacitors with improved performance. Nanomicro Lett 2021;14:34.
44. Ma J, Xia J, Liang Z, Chen X, Du Y, Yan CH. Layered double hydroxide hollowcages with adjustable layer spacing for high performance hybrid supercapacitor. Small 2021;17:e2104423.
45. Wang J, Huang Y, Han X, Li Z, Zhang S, Zong M. A flexible Zinc-Ion hybrid supercapacitor constructed by porous carbon with controllable structure. Appl Surf Sci 2022;579:152247.
46. Peçenek H, Dokan FK, Onses MS, Yılmaz E, Sahmetlioglu E. Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes. Mater Res Bull 2022;149:111745.
47. Wang H, Liang M, Duan D, Shi W, Song Y, Sun Z. Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem Eng J 2018;350:523-33.
48. Houpt D, Ji J, Yang D, Choi JH. High-performance supercapacitor electrodes based on composites of MoS2 nanosheets, carbon nanotubes, and ZIF-8 metal-organic framework nanoparticles. ACS Appl Nano Mater 2022;5:1491-9.
49. Yesuraj J, Vajravijayan S, Yang R, et al. Self-assembly of hausmannite Mn3O4 triangular structures on cocosin protein scaffolds for high energy density symmetric supercapacitor application. Langmuir 2022;38:2928-41.
50. Li H, Liu T, He Y, et al. Interfacial engineering and a low-crystalline strategy for high-performance supercapacitor negative electrodes: Fe2P2O7 nanoplates anchored on N/P co-doped graphene nanotubes. ACS Appl Mater Interfaces 2022;14:3363-73.
51. Kim SJ, Sharma V, Kshetri T, Kim NH, Lee JH. Freestanding binder-free electrodes with nanodisk-needle-like MnCuCo-LTH and Mn1Fe2S2 porous microthorns for high-performance quasi-solid-state supercapacitors. ACS Appl Mater Interfaces 2022;14:12523-37.
52. Peng H, Dai X, Sun K, et al. A high-performance asymmetric supercapacitor designed with a three-dimensional interconnected porous carbon framework and sphere-like nickel nitride nanosheets. New J Chem 2019;43:12623-9.
53. Gao J, Zhang W, Zhao Z, Kong L. Solid-phase synthesis and electrochemical pseudo-capacitance of nitrogen-atom interstitial compound Co3N. Sustain Energy Fuels 2018;2:1178-88.
54. Wang Z, Qu G, Wang C, et al. Modified Co4N by B-doping for high-performance hybrid supercapacitors. Nanoscale 2020;12:18400-8.
55. Wang M, An L, Wu M, et al. Self-template synthesis of nickel cobalt sulfide hollow nanotubes for high-performance battery-type supercapacitors. J Electrochem Soc 2021;168:060510.
56. Yu Z, Wang S, Huang Y, et al. Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes. J Energy Storage 2022;55:105486.
57. Zhang Y, Wang T, Wang Y, et al. Metal organic frameworks derived hierarchical hollow Ni0.85Se|P composites for high-performance hybrid supercapacitor and efficient hydrogen evolution. Electrochim Acta 2019;303:94-104.