REFERENCES

1. You L, Zhang Y, Zhou S, et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci Adv 2019;5:eaav3780.

2. Brehm JA, Neumayer SM, Tao L, et al. Tunable quadruple-well ferroelectric van der Waals crystals. Nat Mater 2020;19:43-8.

3. Niu L, Liu F, Zeng Q, et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 2019;58:596-603.

4. Si M, Saha AK, Liao PY, et al. Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration. ACS Nano 2019;13:8760-5.

5. Zhou S, You L, Chaturvedi A, et al. Anomalous polarization switching and permanent retention in a ferroelectric ionic conductor. Mater Horiz 2020;7:263-74.

6. Xu D, Ma R, Zhao Y, et al. Unconventional out-of-plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric. J Mater Chem C 2020;8:6966-71.

7. Neumayer SM, Brehm JA, Tao L, et al. Local strain and polarization mapping in ferrielectric materials. ACS Appl Mater Interfaces 2020;12:38546-53.

8. Si M, Liao PY, Qiu G, Duan Y, Ye PD. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der waals heterostructure. ACS Nano 2018;12:6700-5.

9. Huang W, Wang F, Yin L, et al. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der waals ferroelectric heterojunctions. Adv Mater 2020;32:e1908040.

10. Singh P, Baek S, Yoo HH, Niu J, Park JH, Lee S. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications. ACS Nano 2022;16:5418-26.

11. Liu F, You L, Seyler KL, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun 2016;7:12357.

12. Wang X, Yu P, Lei Z, et al. Van der Waals negative capacitance transistors. Nat Commun 2019;10:3037.

13. Neumayer SM, Tao L, O’hara A, et al. The concept of negative capacitance in ionically conductive van der Waals ferroelectrics. Adv Energy Mater 2020;10:2001726.

14. Li B, Li S, Wang H, et al. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv Electron Mater 2020;6:2000760.

15. Yue K, Liu Y, Lake RK, Parker AC. A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors. Sci Adv 2019;5:eaau8170.

16. Jiang X, Wang X, Wang X, et al. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat Commun 2022;13:574.

17. Chen J, Zhu C, Cao G, et al. Mimicking neuroplasticity via ion migration in van der waals layered copper indium thiophosphate. Adv Mater 2022;34:e2104676.

18. Guo R, Zhou Y, Wu L, et al. Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering. ACS Appl Mater Interfaces 2018;10:12862-9.

19. Zhang D, Luo ZD, Yao Y, et al. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett 2021;21:995-1002.

20. Susner MA, Belianinov A, Borisevich A, et al. High-Tc layered ferrielectric crystals by coherent spinodal decomposition. ACS Nano 2015;9:12365-73.

21. Susner MA, Chyasnavichyus M, Puretzky AA, et al. Cation-eutectic transition via sublattice melting in CuInP2S6-In4/3P2S6 van der Waals layered crystals. ACS Nano 2017;11:7060-73.

22. Rao R, Selhorst R, Conner BS, Susner MA. Ferrielectric-paraelectric phase transitions in layered CuInP2S6 and CuInP2S6-In4/3P2S6 heterostructures: a Raman spectroscopy and x-ray diffraction study. Phys Rev Mater 2022; 6:045001.

23. Checa M, Ivanov I, Neumayer SM, et al. Correlative piezoresponse and micro-Raman imaging of CuInP2S6-In4/3P2S6 flakes unravels phase-specific phononic fingerprint via unsupervised learning. Appl Phys Lett 2022;121:062901.

24. Neumayer SM, Eliseev EA, Susner MA, et al. Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. Phys Rev Mater 2019;3:024401.

25. Chen C, Liu H, Lai Q, et al. Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect. Nano Lett 2022;22:3275-82.

26. Rao R, Conner BS, Selhorst R, Susner MA. Pressure-driven phase transformations and phase segregation in ferrielectric CuInP2S6-In4/3P2S6 self-assembled heterostructures. Phys Rev B 2021;104:235421.

27. Ming W, Huang B, Zheng S, et al. Flexoelectric engineering of van der Waals ferroelectric CuInP2S6. Sci Adv 2022;8:eabq1232.

28. Eliseev EA, Fomichоv YM, Kalinin SV, Vysochanskii YM, Maksymovich P, Morozovska AN. Labyrinthine domains in ferroelectric nanoparticles: manifestation of a gradient-induced morphological transition. Phys Rev B 2018;98:054101.

29. Checa M, Jin X, Millan-Solsona R, et al. Revealing fast cu-ion transport and enhanced conductivity at the CuInP2S6-In4/3P2S6 heterointerface. ACS Nano 2022;16:15347-57.

30. Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B Condens Matter 1994;49:16223-33.

31. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

32. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169-86.

33. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50.

34. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132:154104.

35. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011;32:1456-65.

36. Maisonneuve V, Evain M, Payen C, Cajipe V, Molinié P. Room-temperature crystal structure of the layered phase CuInP2S6. J Alloys Compd 1995;218:157-64.

37. Diehl R, Carpentier C. The structural chemistry of indium phosphorus chalcogenides. Acta Crystallogr B Struct Sci 1978;34:1097-105.

38. Fang X, Bishara H, Ding K, et al. Nanoindentation pop-in in oxides at room temperature: dislocation activation or crack formation? J Am Ceram Soc 2021;104:4728-41.

39. Oliver W, Pharr G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564-83.

40. Xiao J, Zhang L, Zhou K, Li J, Xie X, Li Z. Anisotropic friction behaviour of highly oriented pyrolytic graphite. Carbon 2013;65:53-62.

41. Zhu Q, Pan K, Xie S, Liu Y, Li J. Nanomechanics of multiferroic composite nanofibers via local excitation piezoresponse force microscopy. J Mech Phys Solids 2019;126:76-86.

42. Hurley DC. Contact resonance force microscopy techniques for nanomechanical measurements. In Applied scanning probe methods XI. Heidelberg, Berlin: Springer, 2009; pp. 97-138.

43. Zhang C, Nie Y, Du A. Intrinsic ultrahigh negative Poisson’s ratio in two-dimensional ferroelectric ABP2x6 materials. Acta Physico-Chimica Sinica 2019;35:1128-33.

44. Ming W, Huang B, Li J. Decoupling competing electromechanical mechanisms in dynamic atomic force microscopy. J Mech Phys Solids 2022;159:104758.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/