REFERENCES
1. Ren X, Meng N, Ventura L, et al. Ultra-high energy density integrated polymer dielectric capacitors. J Mater Chem A 2022;10:10171-80.
2. Feng QK, Zhong SL, Pei JY, et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem Rev 2022;122:3820-78.
3. Liu S, Kang L, Hu J, et al. Realizing superior redox kinetics of hollow bimetallic sulfide nanoarchitectures by defect-induced manipulation toward flexible solid-state supercapacitors. Small 2022;18:e2104507.
4. Kang L, Zhang M, Zhang J, et al. Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A 2020;8:24053-64.
5. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.
6. Luo H, Wang F, Guo R, et al. Progress on polymer dielectrics for electrostatic capacitors application. Adv Sci 2022;9:e2202438.
7. Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 2016;116:4260-317.
8. Li H, Ai D, Ren L, et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv Mater 2019;31:e1900875.
9. Zhou Y, Luo H, Chen S, Han X, Zhang D. Optimising the dielectric property of carbon nanotubes/P(VDF-CTFE) nanocomposites by tailoring the shell thickness of liquid crystalline polymer modified layer. IET Nanodielectr 2019;2:142-50.
10. Cheng R, Wang Y, Men R, et al. High-energy-density polymer dielectrics via compositional and structural tailoring for electrical energy storage. iScience 2022;25:104837.
11. Dong J, Hu R, Niu Y, et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy 2022;99:107314.
12. Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites. Chem Soc Rev 2019;48:4424-65.
13. Li L, Cheng J, Cheng Y, et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv Mater 2021;33:e2102392.
14. Cheng Y, Pan Z, Bai H, et al. Two-dimensional fillers induced superior electrostatic energy storage performance in trilayered architecture nanocomposites. ACS Appl Mater Interfaces 2022;14:8448-57.
15. Liu Y, Luo H, Zhai D, et al. Symmetric trilayer dielectric composites with high energy density using a low loading of KNbO3 nanosheets. ACS Sustain Chem Eng 2021;9:15983-94.
16. Zhang H, Marwat MA, Xie B, et al. Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications. ACS Appl Mater Interfaces 2020;12:1-37.
17. Pan Z, Yao L, Zhai J, Yang K, Shen B, Wang H. Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates. ACS Sustain Chem Eng 2017;5:4707-17.
18. Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymermatrix. J Mater Chem 2012;22:16491.
19. Zhou X, Xue G, Luo H, Bowen CR, Zhang D. Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics. Prog Mater Sci 2021;122:100836.
20. Shen Y, Wu L, Zhao J, et al. Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. Chem Eng J 2022;439:135762.
21. Ma Y, Xie H, Sun Y, et al. Topochemical synthesis and structural characteristics of orientation-controlled (Bi0.5Na0.5)0.94Ba0.06TiO3 perovskite microplatelets. Microstructures 2022;2:2022006.
22. Li J, Li F, Xu Z, Zhang S. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018;30:e1802155.
23. You D, Tan H, Yan Z, et al. Enhanced dielectric energy storage performance of 0.45Na0.5Bi0.5TiO3-0.55Sr0.7Bi0.2TiO3/AlN 0-3 type lead-free composite ceramics. ACS Appl Mater Interfaces 2022;14:17652-61.
24. Ang C, Yu Z. High remnant polarization in Sr0.7Bi0.2TiO3-Na0.5Bi0.5TiO3 solid solutions. Appl Phys Lett 2009;95:232908.
25. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298-415.
26. Chen J, Zhang X, Wang Z, Chen W, Yuan Q, Wang Y. Laminated ferroelectric polymer composites exhibit synchronous ultrahigh discharge efficiency and energy density via utilizing multiple-interface barriers. J Mater Chem A 2022;10:20402-13.
27. Feng M, Feng Y, Zhang T, et al. Recent advances in multilayer-structure dielectrics for energy storage application. Adv Sci 2021;8:e2102221.
28. Wang Y, Yao M, Ma R, et al. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J Mater Chem A 2020;8:884-917.
29. Guo R, Luo H, Yan M, Zhou X, Zhou K, Zhang D. Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 2021;79:105412.
30. Zhang Y, Jeong CK, Yang T, et al. Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J Mater Chem A 2018;6:14546-52.
31. Liu Y, Luo H, Gao Z, et al. Electrospinning synthesis of Na0.5Bi0.5TiO3 nanofibers for dielectric capacitors in energy storage application. Nanomaterials 2022;12:906.
32. Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020;19:999-1005.
33. Liu Y, Luo H, Zhai D, et al. Improved energy density and energy efficiency of poly(vinylidene difluoride) nanocomposite dielectrics using 0.93Na0.5Bi0.5TiO3-0.07BaTiO3 nanofibers. ACS Appl Mater Interfaces 2022;14:19376-87.
34. Ma Y, Luo H, Zhou X, et al. Suppressed polarization by epitaxial growth of SrTiO3 on BaTiO3 nanoparticles for high discharged energy density and efficiency nanocomposites. Nanoscale 2020;12:8230-6.
35. Zhou X, Sun Q, Zhai D, Xue G, Luo H, Zhang D. Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy 2021;84:105936.
36. Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv Mater 2015;27:6658-63.
37. Pei JY, Yin LJ, Zhong SL, Dang ZM. Suppressing the loss of polymer-based dielectrics for high power energy storage. Adv Mater 2022:e2203623.
38. Jiang J, Shen Z, Qian J, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 2019;62:220-9.
39. Lin Y, Zhang Y, Zhan S, et al. Synergistically ultrahigh energy storage density and efficiency in designed sandwich-structured poly(vinylidene fluoride)-based flexible composite films induced by doping Na0.5Bi0.5TiO3 whiskers. J Mater Chem A 2020;8:23427-35.
40. Wang Z, Feng Z, Tang H, et al. Effects of Nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation. ACS Appl Mater Interfaces 2022;14:42513-21.