REFERENCES

1. Yao Z, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 2017;29:1601727.

2. Yang L, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019;102:72-108.

3. Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018;28:1803665.

4. Li D, Zeng X, Li Z, et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 2021;10:675-703.

5. Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019;365:578-82.

6. Qi H, Xie A, Tian A, Zuo R. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater 2020;10:1903338.

7. Kittel C. Theory of antiferroelectric crystals. Phys Rev 1951;82:729-32.

8. Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog Mater Sci 2014;63:1-57.

9. Randall CA, Fan Z, Reaney I, Chen L, Trolier-mckinstry S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J Am Ceram Soc 2021;104:3775-810.

10. Zhao L, Liu Q, Gao J, Zhang S, Li JF. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017;29:1701824.

11. Tagantsev AK, Vaideeswaran K, Vakhrushev SB, et al. The origin of antiferroelectricity in PbZrO3. Nat Commun 2013;4:2229.

12. Aramberri H, Cazorla C, Stengel M, Íñiguez J. On the possibility that PbZrO3 not be antiferroelectric. NPJ Comput Mater 2021;7:196.

13. Hao X, Zhai J, Yao X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. J Am Ceram Soc 2009;92:1133-5.

14. Luo N, Han K, Zhuo F, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J Mater Chem C 2019;7:4999-5008.

15. Cai H, Yan S, Zhou M, et al. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring. J Eur Ceram Soc 2019;39:4761-9.

16. Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0<x<0.10). Dalton Trans 2015;44:10763-72.

17. Guo H, Shimizu H, Mizuno Y, Randall CA. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J Appl Phys 2015;117:214103.

18. Gao L, Guo H, Zhang S, Randall CA. A perovskite lead-free antiferroelectric xCaHfO3-(1-x) NaNbO3 with induced double hysteresis loops at room temperature. J Appl Phys 2016;120:204102.

19. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 1976;32:751-67.

20. Chiu F. A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014;2014:1-18.

21. Huang Y, Shu L, Zhang S, et al. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO3-based lead-free ferroelectric films. J Am Ceram Soc 2021;104:4119-30.

22. Fan Q, Ma C, Ma C, Lu R, Cheng S, Liu M. Manipulating leakage behavior via thickness in epitaxial BaZr0.35Ti0.65O3 thin film capacitors. Appl Phys Lett 2020;116:192902.

23. Jiang X, Lv J, Chen Z, et al. Superior energy storage BaTiO3-based amorphous dielectric film with polymorphic hexagonal and cubic nanostructures. Chem Eng J 2022;431:133447.

24. Chen X, Cao F, Zhang H, et al. Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 antiferroelectric bulk ceramics. J Am Ceram Soc 2012;95:1163-6.

25. Li D, Shen Z, Li Z, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors. J Mater Chem C 2020;8:7650-7.

26. Ren Y, Cheng H, Ouyang J, et al. Bimodal polymorphic nanodomains in ferroelectric films for giant energy storage. Energy Storage Mater 2022;48:306-13.

27. Chen MJ, Ning XK, Wang SF, Fu GS. Significant enhancement of energy storage density and polarization in self-assembled PbZrO3: NiO nano-columnar composite films. Nanoscale 2019;11:1914-20.

28. Xu R, Wang M, Zhu Q, Xu Z, Feng Y, Wei X. Investigation on antiferroelectricity of Pb0.97La0.02(Hf1-xTix)O3 ceramics with low Ti content (0 ≤ x ≤ 0.1). J Am Ceram Soc 2022;105:7438-45.

29. Huang X, Zhang T, Wang W, Ge P, Tang X. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films. Mater Design 2021;204:109666.

30. Jiang X, Hao H, Zhang S, et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J Eur Ceram Soc 2019;39:1103-9.

31. Li YZ, Wang ZJ, Bai Y, Zhang ZD. High energy storage performance in Ca-doped PbZrO3 antiferroelectric films. J Eur Ceram Soc 2020;40:1285-92.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/